Math 108-Geometric Cambinatorics
The kneser Conjecture

We finally apply the Borsuk-Ulam Theorem to graph there and proper colorings

Definition.
The Kneser Graph $K G_{n i k}$ for $n \geqslant 2, k \geqslant 1$ is given by - vertices are subsets of $\{1,2, \cdots, n\}$ of size k.

- given two vertices S and T (as sets), there is an edge ST if S and T are disjoints.

Examples

$$
\begin{aligned}
& n=5 \\
& k=2
\end{aligned}
$$

$$
\begin{aligned}
& x\left(k G_{4,1}\right)=4 \\
& x\left(k G_{4,2}\right)=2 \\
& x\left(k G_{n, k}\right)=1 \text { if } k>\frac{n}{2}
\end{aligned}
$$

$$
\psi\left(K G_{5,2}\right)=3 .
$$

Theorem (Lovasz, 1978; (Conjectured by kneser in 1955 as un "exercise") The chromatic number of the kneser Graph $K G_{n, k}$ is $n-2 k+2$.

We first prove, algorithmically, that $n-2 k+2$ suffice.
Then, to prove that $n-2 k+2$ color are necessary, we will Use the Barsuk-Ulam theorem.

Proust of spier bound
We give a procedure to color $K G_{\text {ni }}$ with $n-2 k+2$ colors:

- Color all the sets that include 1 with the first color

- color all the remaining sets that include $n-2 k+1$ with the $n-2 k+1-$ st color.
- color all the remaining vertices with the $n-2 k+2-n d$ color.

We need to show that this coloring is proper.

- Far the first $n-2 k+1$ colors, all the vertices have an element of their corresponding sets in common, so they cant share an edge.
- For the remaining vertices, they are subsets of $\{n-2 k+2, \ldots, n\}$ of size k. This is equivalent te subsets of $\{1, \ldots, 2 k-1\}$ of size k. However, we have seen that $\psi\left(k G_{n, k}\right)=1$ if $k^{\prime}>n^{\prime}=2 k-1$. Since this is the case here, the same color can be used for all subsets of size k of $\{n-2 k+2, \ldots, n\}$.

Lemma (Equivalent to Borsuk-Vlam theorem)
If S^{n} is covered by $n+1$ subsets X_{1}, \ldots, X_{n+1} such that each of them is either open or closed, then at least are of them contains a pair of antipodal points.

We are now left with proving that $n-2 k+z$ are necessary.
Proof of lower band (Greene, z002)
We proceed by contradiction, assuming that one can color $K G_{n, k}$ with $d:=n-2 k+1$ colors. Then, there exists a proper coloring

$$
c:\binom{n}{k} \longrightarrow\{1, \ldots, d\}
$$

Let X be a set of n points on s^{d} in general position, \therefore. such that no dol points lie on the same equator of s^{d}.

These n points correspond to the elements of $\{1,2, \ldots, n\}$ used to define the vertices, so that a vertex correspond te a set of k paints of s^{d}.
Construct d open sets M_{1}, \ldots, M_{d} as follows:
for a point $x \in S^{d}$, consider all the points of x in the samerhemisphere as x (in the closest halfsphere from x). For each subset v of k points in
 the same hemis phere, $x \in U_{((v) \text {. Note that the sets need not to be }}$ disjoint.
Construct the closed set $F^{\text {Con }} \cdot d+1=S^{d} \backslash\left\{\mu_{1}, \ldots, \mu_{d}\right\}$. $u_{1}, \ldots, U_{d} F_{d+1}$ cover s^{d} using only open and closed sets, so by the Borsuk-Ulam theorem, one of them contains antipodal points: call this set either $\mu_{i}\left(i \in 1_{1}, \ldots, d\right)$ or $F_{d_{+1}}$.

If U_{i} contains antipodal points, x and $-x$: Then, each hemisphere contains k points of x corresponding to vertices v and v i both colored with color i.

Also, v and v^{\prime} correspond to two disjoint sets of k
vertices, so they must be adjacent in $K G_{n, k}$.
However, $\quad c(V)=i=c\left(U^{\prime}\right)$, which means that the coloring is not proper
So the set containing antipodal points must be F_{d+1}.
If $x \in F_{d+1}$, then the open hemisphere around x does not contain k elements of x. The same is true for $-x$.
Therefore, the equator (for the poles of $s^{d} x$ and-x) contains at least $n-2(k-1)=n-2 k+2=d+1$. This contradicts the fact that X is in general position.
Hence, it is not possible to color $k G_{n_{1} k}$ with $d=n-2 k+1$ colors.

Remark
There also exists a purely combinatorial proof of the lovasz Theorem, using tucker's Lemma. (see for example [Lon13, \&2.1])

References: $[$ Mat $03,93.3]$

$$
[\operatorname{Lan} 13,62.1]
$$

