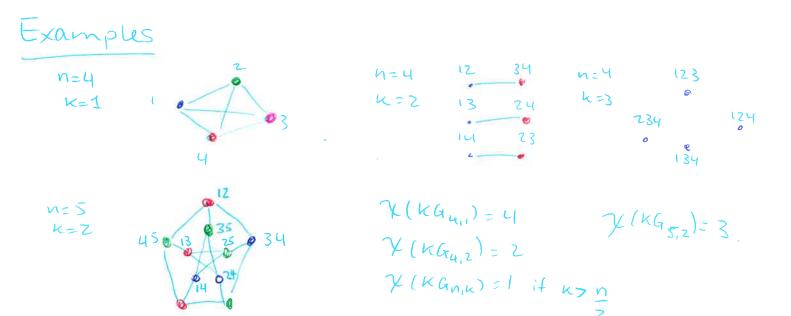
Math 108 - Geometric Cambinatorics The Kneser Conjecture Nadia Lafrenière 212412023

We finally apply the Borsuk Ulam Theorem to graph theory and proper colorings.

Definition.

The Kneser Graph KGnik for N7,2, K7,1 is given by

- o vertices are subsets of {1.2, ..., n} of size k.
- · given two vertices S and T (as sets), there is an edge ST iff S and T are disjoints.



Theorem | Lovasz, 1978; Conjectived by kneser in 1955 as an "exercise")

The chromatic number of the Kneser Graph Kank is

n-2k+2.

We first prove, algorithmically, that n-2k+2 suffice.

Then, to prove that n-2k+2 color are necessary, we will use the Borsuk-Ulam theorem.

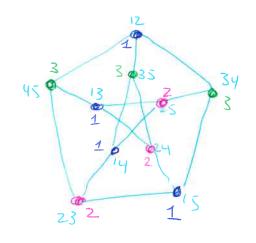
Proof of upper bound

We give a procedure to older KGnik with N-2k+2 older:

- Color all the sets that include 1 with the first color
- Color all the remaining sets that include n-2k+1 with the n-2k+1-st color.
- color all the remaining vertices with the n-2k+2-nd color. We need to show that this coloring is proper.
 - For the first n-2k+1 colors, all the vertices have an element of their corres ponding sets in rommon, so they rant share an edge.
 - For the remaining vertices, they are subsets of {n-2k+2,...,n} of size k. This is equivalent to subsets of {1,...,2k-1} of size k. However, we have seen that $Y(kG_{n,k})=1$ if k'>n'=2k-1. Since this is the case here, the same color can be used for all subsets of size k of {n-2k+2,...,n}.

Lemma (Equivalent to Borsuk-Ulam Theorem)

If S' is covered by not subsets X1, ..., Xnot such that each of them is either open or closed, then at least one of them contains a pair of untipodal points.



Proof of lower bound (Greene, 2002)

We proceed by contradiction, assuming that one can color $KG_{n,k}$ with d:=n-2k+1 colors. Then, there exists a proper coloring $C:\binom{n}{k}\longrightarrow \{1,\dots,d\}$.

Let X be a set of n points on Sd in general position, i.e. such that no del points lie on the same equator of Sd.

These n points correspond to the elements of {1.2,..., n3 used to define the vertices, so that a vertex correspond to a set of k points of sd

Construct d open sets $M_1, ..., M_d$ as follows:

for a point $x \in S^d$, consider all the points of X in the same Themisphere as X (in the closest half-sphere from X). For each subset vot X points in

the same hemis phere, $x \in \mathcal{U}_{C(V)}$. Note that the sets need not to be disjoint.

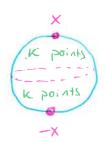
Construct the closed set F.d. = 5d \ {41, ..., Md}.

M, lagracover so using only open and closed sets, so by the Barsuk-Ulam theorem, one of them contains antipodal points:

Call this set either Ui (i & 1, ..., d) or Fdti

If Ui contains antipodal points, x and -x then, each hemisphere contains k points of x corresponding to vertices v and v', both colored with color i.

Also, v and v' correspond to two disjoint sets of k



in half only one Sphere point vertices, so they must be adjacent in KGnik.

However, C(V) = i = C(V'), which means that the coloring is not proper.

So the set containing antipodal points must be \mathcal{F}_{olti} .

If $x \in \mathcal{F}_{d+1}$, then the open hemi's phere around x does not contain K elements of X. The same is true for -x. Therefore, the equator (for the poles of S^d x and -x) contains at least n-2(k-1)=n-2k+2=d+1. This contradicts the fact

Hence, it is not possible to color Kanik with d=n-2k+1 colors.

Remark

There also exists a purely combinatorial proof of the Lovasz theorem, using tucker's Lemma. (see for example [Lon13, §2.1])

References: [Mato3, 63.3] [Lon 13, 62.1]

that X is in general position.