Math 108-Geometric Combinatorics
The game of Hex, a ham $\&$ cheese sandwich, and the stolen necklace

We apply Brawer's fixed point and Borsuk-Ulam Theorem to fair-division and game theory problems.

The game of Hex
Hex is a board same played on a hexagonal grid, in which players take turn placing tokens on the board (anywhere), with the goal of making a path from one
 end of the board to the other.

Observation: At most one player wins cotherwise, paths cross and overlap).

Theorern (Nash, 194.9; proof here by Gale, 1979)
Hex cannot end in a draw.
Proof
Assurne that there is no winner, and that we work on the grid on the right. Since there is no winner and the game ends, source picture: Jean-Luc W on Wikipedia every tile of the board is either red or blue.
We partition the tiles in 4 sets:

- BL: blue tiles connected by a path to the left sidle of the board.
- BR: other blue tiles
- RB: red tiles connected by a path to the top of the board.
- RT: other red tiles.

We also define the vectors:
$\rightarrow e_{1}$: one step to the right
A e_{2} : one step above, where "above'" is considered as parallel to the side.
Then. we have the function below, defined for points that are the barycenter of the tiles:

$$
f(v)= \begin{cases}v+e_{1} & \text { if } v \in B L \\ v-e_{1} & \text { if } v \in B R \\ v+e_{2} & \text { if } v \in R B \\ v-e_{2} & \text { if } v \in R T\end{cases}
$$

we extend f affinely, as to create a continuous function on the "disk" the board. (s using the closest tiles (up to 3).

A fixed point can only occur when on an edge between two tiles, such that either one is in $B C$ and one in $B R$, or one is in $R B$ and the other one in $R T$.
However, by definition of the sets, tiles in BL and BR cannot be adjacent (nor can the tiles in RB and in RT). Hence, there is no fixed point.
But f is a continuous function on (something homeomorphic to) the disk and, by Brawer's fixed point theorem, there is a fixed point.
Hence, there must be either a blue or a red path across the board, and the game does not end in a draw.

The Ham Sandwich Theorem
We discuss an n-dimensional version of a theorem that is refered to as the pancake theorem in \mathbb{R}^{2} or as the ham sandwich theorem. It says that there are always a hyperplane that cuts a 3-dimensional sandwich such that each of the three ingredients [breadiham, lettuce?-cheese?-butter?] is equidis tributed between the two parts.

Theorem (stone-Tukey, 1942 ; Ham sandwich Theorem).
Let $x_{1}, x_{2}, \ldots, x_{n}$ be banded and measurable parts in \mathbb{R}^{n}.
Then, there exists at least one hyperplane that divides each of x_{1}, \ldots, x_{n} exactly in half.

Proof
An affine hyperplane is de fined by a fixed vector α (we can assume α is a unit vector), an a translation factor a in $1 \mathbb{R}$.
Then, $H(\alpha, a)=\left\{v \in \mathbb{R}^{n}: \alpha \cdot v=a\right\}$, and $H^{+}(\alpha, a)=\left\{v \in \mathbb{R}^{n}: \alpha \cdot v>a\right\}$.
For fixed α and i, consider the function of a that gives the measure of $H^{+}(\alpha, a) \cap x_{i}$. This function is decreasing over \mathbb{R} and continuous. By the intermediate value theorem, it takes all the valuesin $\overline{C O},\left(x_{i} 1\right)^{\prime} H^{-}$ Moreover,

$$
\begin{aligned}
H^{+}(-\alpha,-a) & =\left\{v \in \mathbb{R}^{n}:-\alpha \cdot v>-a\right\} \\
& =\left\{v \in \mathbb{R}^{n}: \alpha \cdot v<a\right\}=H^{-}(\alpha, a)
\end{aligned}
$$

scanning hyperplam.
Given a unit vector α in $\mathbb{R}^{n}\left(s o \alpha \in S^{n-1}\right)$, define $g(\alpha)$ to be the value a for which $\left|H^{+}(\alpha, a) \cap x_{1}\right|=\left|x_{1}\right| / 2$.
Then, $f_{i}(\alpha)=1 H^{+}(\alpha, g(\alpha)) \cap x_{i} \mid$ is a continuous function for each i,
and

$$
\begin{aligned}
f: S^{n-1} & \rightarrow \mathbb{R}^{n-1} \\
\alpha \mapsto & \left(f_{2}(\alpha), \ldots, f_{n}(\alpha)\right) \\
& =\left(\left|1^{+1}(\alpha, g(\alpha),) \cap x_{2}\right|, \ldots,\left|H^{+}(\alpha, g(\alpha)) \cap x_{n}\right|\right)
\end{aligned}
$$

is continuous.
From the Borsuk-Ulam theorem, there exists $\alpha \in S^{n-1}$ for which $f(\alpha)=f(-\alpha)$; ie. for which $f(\alpha)=\left|H^{\dagger}(\alpha, g(\alpha)) \cap x_{i}\right|=\left|H^{-}(\alpha, g(\alpha)) \cap x_{i}\right|=1 / 2\left|x_{i}\right|$ Because this is true for all $i \in\{1,2, \ldots, n\}$, there exists a whit vector α defining a hyperplane $H(\alpha, g(\alpha))$ splitting each of x_{1}, \ldots, x_{n} into two equal parts.

The stolen necklace
We present a discrete analogue of the horn sandwich theorem, and then apply it to a combinatorial problem.

Theorem (Discrete Ham Sandwich)
Let x_{1}, \ldots, x_{n} be finite sets of points in general position in $\mathbb{R}^{n *}$. Then, there exists a hyperplane that divides each of x_{1}, \ldots, x_{n} into two sets of the same size, ie each half-space contains exactly $\left\lfloor\frac{\left|x_{i}\right|}{2}\right\rfloor$ points of x_{i}, for each $i \in\{1,2, \ldots, n\}$.

* so that, on each hyperplane, there are at most n points.

Problem: Two thieves stole a pricy necklace and would like te fairly split its valve. There are n different types of beads, and the number of beads of each type is even. Because they don't know the value of the beads they will split the set of beads of each type in half.

The chain is made of gold, so they want to cut it as few times
as possible. The necklace has an opening mechanism.
How many cuts are needed?
Corollary lof discrete ham sandwich theorem; Goldberg West, 1985)
n cuts are always sufficient to split evenly then types of beads of the necklace
in cuts are sanetimes needed as well, as in the example to the right.

Proof
Consider the curve:

$$
\begin{aligned}
\gamma: \mathbb{R} & \longrightarrow \mathbb{R}^{n} \\
t & \longrightarrow\left(t, t^{2}, \ldots, t^{n}\right)
\end{aligned}
$$

Let H be a hyperplane in $1 R^{n}$. Then. H intersects γ in at most n points: $H=\left\{v \in \mathbb{R}^{n} \mid \alpha_{1} v_{1}+\alpha_{2} v_{i}+\ldots+\alpha_{n} v_{n}=a\right\}$ in tersects with γ exactly when $\alpha_{1} t+\ldots+\alpha_{n} t^{n}=a$. Since this is a polynomial of degree n, there are at most n solutions.

Hence, placing the open necklace along γ, there is a hyperplane that splits the necklace in two parts with half the beads of each type in each part, and that requires cutting the neck lace at most n times.

References: [Matousek] 93
[Ga l79]
[Gw85]

