Math 108-Geometric Cambinatorics
The Borsuk-ulam Theorem \& Tucker's Lemma
$2 / 17 / 2023$

The use of the Borsuk-Ulam theorem to solve same fair division and graph theory problems is seen as the advent of topological combinaterics.

The Borsuk-Ulam Theorem

Corollary (of theorem below; or "how I remember its content") At any time, there are two diametrically opposed points on planet Earth where the pressure and the temperature at these points are the same. Those points change in time.

Which statement does it follow from?

Corollary (of theorem below).
Take an inflated ball, deflate it, and put it on a table. There are two diametrically opposed points of the ball that lie on top of eachother.

Picture credit: [Matoz]
We should state the theorem. We want prove it because it would require hard topological tools, but we prove that the multipu statements are equivalent.

Theoreun (Borsuk 1933; after a conjecture of Ulam, 1933)
An antipodal mapping f is a continuous function such that $f(x)=-f(-x)$, for all x. Then,
(1) There is no antipodal mapping $f: S^{n} \rightarrow S^{n-1}$

Sphere of dimension n; lives in LR^{n+1}.
(2) For each antipodal mapping $f: s^{n} \rightarrow \mathbb{R}^{n}$, there exists $x \in S^{n}$ s.t. $f(x)=(0, \ldots, 0)$
(3) For any continuous mapping $f: s^{n} \rightarrow \mathbb{R}^{n}$, there exists x such that $f(x)=f(-x)$.
(U) (Also Schnirelman-Ljusternik Theorem) Any open (resp. closed) cover of S^{n} by $n+1$ sets is such that at least one set contains a pair of antipodal points.

Proof conf equivalence) $\quad(1) \Rightarrow(2)$
$(1)=(2)$ By contrapositive le f be an antipodal mapping that never vanishes. Then,

$$
g(x)=\frac{f(x)}{\|f(x)\|}
$$

is a well-detined antipodal mapping $S^{n} \rightarrow S^{n-1}$
$2) \Rightarrow(3)$ By contrapositive let f be a continuous mapping for which there are no x s.t. $f(x)=f(-x)$. Define

$$
g(x)=f(x)-f(-x)
$$

Then, S is an antipodal mapping on thesamer domain and image that never vanishes, contradicting 12).
$(3) \Rightarrow(4)$ We prove it by contradiction, and for closed covers.
The case of open covers is similar, using that $S^{n} \backslash A_{i}$ is open when A_{i} is closed.

Assume S^{n} has a cover $A=\left\{A_{1}, A_{2}, \ldots, A_{n+1}\right\}$ in which no closed set Ai contains a pair of antipodal points.
let $x \in A_{i}$. Then, $-x \notin A_{i}$, and $d\left(x, A_{i}\right)=$.
Define $f: S^{n} \rightarrow \mathbb{R}^{n}$

$$
f(x)=\left(d\left(x, A_{1}\right), \ldots, d\left(x, A_{n}\right)\right)
$$

Using (3), there exists x such that $f(x)=f(-x)$. Since A_{i} cannot contain both x and $-x, d\left(x, A_{i}\right)_{\neq 0}$ for all $i \in\{1, \cdots, n\}$. Hence, x and $-x$ belong to Anti, showing that at least one subset contains a pair of antipodal points.

Remark: There exists a cover of s^{n} by $n+2$ closed subsets such that no pair of antipodal points belong to the same subset.
Idea: put a simplex in the middle of the sphere, and expand it until the edges touch the sphere. This creates a cover. of the sphere into $n+2$ subsets, the facets.
14) \Rightarrow (1). By contrapositive.

Let f be an antipodal mapping $S^{n} \rightarrow S^{n-1}$.
let $\left\{A_{1}, \ldots, A_{n+1}\right\}$ be a cover by closed sets of
 S^{n-1}, containing no antipodal points (it exists, by the remarks above) Then, $f^{-1}\left(A_{1}\right), \ldots, f^{-1}\left(A_{n+1}\right)$ is a collection of closed sets that cover s^{n}. Also, for any $i, f^{-1}\left(A_{i}\right)$ does not contain both x and $-x$ (for some x): otherwise, $-f(-x)=f(x) \in A_{i}$ and - $f(-x) \in A_{i}$, so $f(-x)$ and its anti pole belong to A_{i}, contradicting the hypothesis.

A discrete analog: Tucker's Lemma
Triangulations, again!
Theorem (Tucker's lemma, (946)
Let T be a triangulation (decomposition into simplices) of B^{n} that is antipodally symmetric on the boundary. Let

$$
\lambda: V(T) \longrightarrow\{ \pm 1, \pm 2, \ldots, \pm n\}
$$

be a labeling of the vertices of T with $\lambda(v)=-\lambda(-v)$ for all $V \in \partial B^{n}$. Then, there exists an edge in T that is complementary, i.e. its two endpoints v_{1} and v_{2} satisfy $\lambda\left(v_{1}\right)+\lambda\left(v_{2}\right)=0$.

Example: $n=2$
complementary edge

Sketch of proof, for $n=2$ (generalizes to higher dimension)
Goal: find the edge, by drawing a path towards it.

- Start on the bandary: if there is a complimentary edge. we are done. otherwise, it means that we use all of $+1,-1$, +2 and -2 . The edges $\{+1,-2\}$ and $\{-1,+2\}$ must appear (because of anti podality and the absence of $\{+1,-1\}$ and $\{t 2,-2\}$). We can even show that $\{t 1,-2\}$ appears an odd number of times
- Start at a $\{-1,+2\}$ edge. If the third vertex of the simplex is
- 1 or -2 : we have found the complimentary edge.
- -1 or 2 : there is a second edge labeled $\{-1,+2\}$ in that Simplex. Repeat the process with the other simplex to which e belongs.
- We need to show that this process terminates by finding a complimentary edge. For this it is enough to show that
- in this process, no edge is used twice. (not obvious)
- if we "fall out" of the ball, we can start over with an unused edge on the boundary. This is possible because there is an odd number of $\{-1,+2\}$ edges on the bandary.
Therefore, the algorithm always terminates by finding a complimentary edge.

Theorem
The Borsuk-Ulam theorem is equivalent to Tucker's Lemma.

Proof: Homework.

References: [Lon 13] M. de Longueville. A Course in Topological combinaterics, 2013.
[Mato3] J. Matasek. Using the Borsuk-Ulam Theorem, 2003.

