Math 108-Geanetric Cambinaterics
Creating tilings
Goal: Find non-convex tiles that tile the plane.
Tiling by translations
Tiles that tile the plane by translation:
Examples: \square

Remark: No triangle tiles the plane by translation: puzzle piece).

Theorem (Beauquier\& Nival, 1991)
A tile tiles the plane using only translations if and only if it is a "parallelogram" or a "hexagon" in the following sense: there exists six ${ }^{\text {consecutive points }} a, b, c, d, e$,f (with potentially $y^{b o t h} b=c$ and $e=f$) on its boundary with the segments $a b$ and ed (as well as bc and fe e, and of and cd) have the same length and same shape (orientation).

Examples

Tilings by rotations
Unlike with rotations, there is no known necessary and sufficient criterion for a tile to tile the plane using translations and rotations.

Theorem (Conway Criterion, ~1975)
A tile allows for a plane tiling using translations and reflections if there exists six consecutive points on the boundary a, b, c, d, e, f (at least three of which are distinct) with

- $a b$ and ed have the same length and shape (including orientation).
- $b c_{1} c d$, ff and af are all invariant under rotation by 180°.

Examples

Credit: D. Schattscheiner, Will it tile? Try the Conway Criterion.

Credit: M.C. Escher

This is certainly not a necessary condition, as same tiles meet the Beququier-Nivat theovern and do not meet the Conway criterion

Corollary

- All triangles tile the plane using translations and rotations.
- Hexagons with ${ }^{\prime}$ appair of congruent tile the plane using translations and rotations.

Artistic drawings.
Many artistic drawings use simple tiles, that are then modified to make it looks good.

Example: A pentagonal fish, by M.C. Escher.

Four fish together tile the plane by translation

orange sides are congruent and parallel

Steps to make a tiling by hand, or using
computer drawing tools:

- Choose a tile that tiles the plane, or build one following the Conway criterion or the Beauquier-Nivat theorem.
- Deform it into something that resembles what you want to draw, making sure it keeps meeting the criteria for tiling.
- Draw the interior of the shape t color it. It is common to use different colors for different copies of the share.

Worksheet 11.1. Finding motifs for a tile shape
For each tile shape below, think of a real-world motif that could be used for it, and draw in interior details. It may help to rotate the sheet to look at the shapes in different orientations and to consider different viewpoints (e.g., top view vs. side view).

Source of activity: Fathauer, Tessellations.

Reference: R. Kathaver, Tessellations: Mathematics, Art and Recreation. Pictures of M.C. Escher

