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1. Introduction

In this class we talk mainly about algebraic extensions, but we should not forget about
our transcendental friends. Almost by definition, t ∈ F (t) is transcendental over F , but
the most intriguing cases in terms of proving transcendentality occur already over Q. A
complex number α ∈ C is called transcendental if it is transcendental over Q. Recall
that we have shown that ”most” numbers are transcendental (even in R), but showing that
some of them are indeed transcendental is very difficult. Today we will survey what is
known about this problem.

The main reference for this short note is Baker, ”Transcendental Number Theory”.

2. Liouville Numbers

In 1844, Liouville was the first to show that certain numbers are transcendental. He
introduced a class of numbers that are ”almost rational”, so that we can approximate
them closely by sequences of rational numbers.

Definition 1. A Liouville number x ∈ R is a number such that for any positive integer
n ∈ Z>0, there exist pn, qn ∈ Z with qn > 1 such that

0 <

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

qnn
.

Theorem 2. Liouville numbers exist. In fact, the set of Liouville numbers is uncountable.

Proof. The proof is actually constructive(!). Let

x =

∞∑
k=1

ak
bk!
,

where b ∈ Z≥2, and let {ak}∞k=1 be a sequence of integers such that ak ∈ {0, 1, 2, . . . , b− 1}
for all k and ak 6= 0 for infinitely many k (so that the sum is not finite). It is an easy
exercise in calculus to see that the sum converges to a real number x ∈ R. Note that the
cardinality of the set of such infinite sequences {ak} is the cardinality of the continuum,
c = |R|.

For any n ∈ Z>0 define

qn = bn!, pn = qn

n∑
k=1

ak
bk!

=

n∑
k=1

akb
n!−k! ∈ Z.

1
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Note that qn > 1, since b ≥ 2. Then, as infinitely many ak are nonzero, and all of them
are nonnegative,

x− pn
qn

=
∞∑

k=n+1

ak
bk!

> 0.

Moreover, as ak < b for all k we have
∞∑

k=n+1

ak
bk!
≤

∞∑
k=n+1

b− 1

bk!
= (b− 1)

∞∑
k=n+1

1

bk!

< (b− 1)
∞∑

k=(n+1)!

1

bk
=

b− 1

b(n+1)!
· 1

1− b−1

=
b

b(n+1)!
≤ bn!

b(n+1)!
=

1

b(n+1)!−n!
=

1

bn·n!
=

1

qnn
. �

A special case of this construction, which is the simplest to write down in base 10 is

Definition 3. The number α =
∑∞

n=1 10−n! is called Liouville’s constant.

Liouville then proceeds to show that all Liouville numbers are transcendental.

Theorem 4. If α ∈ R is a root of an irreducible polynomial f(x) ∈ Z[x] of degree n > 0,
then there is some C ∈ R>0 such that for all p, q ∈ Z with q > 0 either α = p

q or∣∣∣∣α− p

q

∣∣∣∣ > C

qn
.

Proof. Let M = max{x:|x−α|<1} |f ′(x)|. Select C ∈ R>0 such that

C < min

(
1,

1

M

)
.

Assume, on the contrary, that there exist p, q ∈ Z such that q > 0 and∣∣∣∣α− p

q

∣∣∣∣ ≤ C

qn
≤ C,

and let r = p
q . Assume r 6= α, so that f(r) 6= 0. By the Mean Value Theorem, there exists

x0 between α and r such that

f(α)− f(r) = f ′(x0)(α− r).
Since f(α) = 0 and f(r) 6= 0, it follows that f ′(x0) 6= 0, so that

|α− r| = |f(α)− f(r)|
|f ′(x0)|

=
|f(r)|
|f ′(x0)|

.

If we write f(x) =
∑n

i=0 cix
i with ci ∈ Z, then

f(r) = f

(
p

q

)
=

n∑
i=0

ci

(
p

q

)i
=

1

qn

n∑
i=0

cip
iqn−i ∈ 1

qn
Z,
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so from f(r) 6= 0, it follows that |f(r)| ≥ 1
qn .

Since |α− x0| < |α− r| < 1, by definition of M we get |f ′(x0)| ≤M < 1
C , hence

|α− r| > C

qn
,

contradicting the hypothesis. �

Corollary 5. Liouville numbers are transcendental.

Proof. Let x ∈ R be a Liouville number. If x is algebraic, then there exist n and C > 0
such that for all p, q ∈ Z with q > 0 one has either x = p

q or∣∣∣∣x− p

q

∣∣∣∣ > C

qn
.

Let r be a positive integer such that 2−r ≤ C, and let m = n + r. Since x is a Liouville
number, there exist integers p, q ∈ Z with q > 1 such that

0 <

∣∣∣∣x− p

q

∣∣∣∣ < 1

qm
=

1

qn+r
≤ 1

2r
1

qn
≤ C

qn
,

contradiction. �

Note that Liouville found these numbers before Cantor invented the notion of countabil-
ity, so it was only after that it was discovered that the algebraic numbers are countable,
and the transcendental numbers are uncountable.

Great, we have constructed uncountably many transcendental numbers, but these are
still not a lot. (In what sense? It is a null set in the sense of measure theory - exercise.)
But we care about specific numbers, like e and π, which are not Liouville numbers (In fact,
e have irrationality measure 2, and π has an irrationality measure between 2 and 7.103...).

Before we prove that π and e are transcendental, we need a couple of technical lemmata.

Lemma 6. Let f(x) ∈ R[x] be s.t. deg f(x) = m, and let

If (s) =

∫ s

0
es−uf(u) du

be the contour integral taken over the line joining 0 and s. Then

If (s) = es
m∑
j=0

f (j)(0)−
m∑
j=0

f (j)(s).

Proof. By induction on m. If m = 0, then∫ s

0
es−uf(u) du =

∫ 1

0
ses(1−t)f(0) dt = −es(1−t)f(0)|1t=0 = esf(0)− f(0) = esf(0)− f(s),

establishing the base of induction. For the induction step, we use integration by parts.∫ s

0
es−uf(u) du =

∫ 1

0
ses(1−t)f(st) dt = −es(1−t)f(st)|1t=0 +

∫ 1

0
ses(1−t)f ′(st) dt.
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Since deg f ′(x) = m− 1, by the induction hypothesis, we obtain

If (s) = esf(0)− f(s) +

es m∑
j=1

f (j)(0)−
m∑
j=1

f (j)(s)

 = es
m∑
j=0

f (j)(0)−
m∑
j=0

f (j)(s).

�

Lemma 7. Let f(x) =
∑m

i=0 aix
i ∈ R[x], and write

f(x) = |ai|xi ∈ R[x].

Then

|If (s)| ≤ |s|e|s|f(|s|).

Proof. By the triangle inequality for integrals, we have

|If (s)| =
∣∣∣∣∫ 1

0
ses(1−t)f(st) dt

∣∣∣∣ ≤ ∫ 1

0
|s|e|s(1−t)||f(st)| dt ≤ |s|e|s||f(s)|.

But by the triangle inequality, one has

|f(s)| =

∣∣∣∣∣
m∑
i=0

ais
i

∣∣∣∣∣ ≤
m∑
i=0

|ai||s|i = f(|s|). �

We now proceed, following Hermite, to prove that e is transcendental.

Theorem 8. e is transcendental.

Proof. Assume, on the contrary, that e is algebraic, and let me(x) =
∑n

k=0 akx
k be its

minimal polynomial. In particular, a0 6= 0 and n > 0. Let p be a large prime, and let

f(x) = xp−1(x− 1)p · · · (x− n)p ∈ R[x].

Consider the quantity

J =
n∑
k=0

akIf (k).

From the first lemmas and me(e) = 0 we obtain

J =

n∑
k=0

ak

ek np+p−1∑
j=0

f (j)(0)−
np+p−1∑
j=0

f (j)(k)

 = −
n∑
k=0

(n+1)p−1∑
j=0

akf
(j)(k).

As k is a root of f with multiplicity p for all k > 0, f (j)(k) = 0 for all j < p and all
k > 0 and as 0 has multiplicity p− 1, also for all j < p− 1 if k = 0. It follows that for all
(k, j) 6= (0, p− 1), p! | f (j)(k). Furthermore,

f (p−1)(0) = (p− 1)!(−1)np(n!)p,

whence, if p > n, f (p−1)(0) is divisible by (p− 1)! and not by p!. In particular, if |a0| < p,

then a0f
(p−1)(0) is the unique summand not divisible by p, so that J 6= 0 and J is divisible
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by (p − 1)!, thus |J | ≥ (p − 1)!. However, the second lemma, together with the estimate

f(k) ≤ (2n)(n+1)p−1 (note that f(x) ≤ xp−1(x+ 1)p · · · (x+ n)p) yields

|J | ≤
n∑
k=0

kake
kf(k) ≤

n∑
k=0

kake
k(2n)(n+1)p−1 = A · Cp,

where A,C are constants. Choosing p large enough, yields a contradiction. �

Finally, we can prove that π is transcendental.

Theorem 9. π is transcendental.

Proof. Assume, on the contrary, that π is algebraic, then so is θ = πi. Let mθ(x) ∈ Z[x] =
adx

d + . . . be its minimal polynomial, scaled to have relatively prime integral coefficients
with ad > 0, and write θ = θ1, . . . , θd for its roots. From Euler’s equation eiπ = −1, we
obtain

(1 + eθ1)(1 + eθ2) · · · (1 + eθd) = 0.

Expanding the left hand side, we obtain∑
ε∈{0,1}d

eΘε = 0, where Θε =

d∑
j=0

εjθj .

Suppose exactly n of the Θε are nonzero, and denote them by α1, . . . , αn. Then

2d − n+ eα1 + . . .+ eαn = 0.

Let p be a large prime, and consider

f(x) = anpd x
p−1(x− α1)p · · · (x− αn)p.

We shall compare estimates for

J =
n∑
k=0

If (αk).

From the first Lemma, we obtain

J =

n∑
k=1

eαk (n+1)p−1∑
j=0

f (j)(0)−
(n+1)p−1∑

j=0

f (j)(αk)

 = (n−2d)

(n+1)p−1∑
j=0

f (j)(0)−
n∑
k=1

(n+1)p−1∑
j=0

f (j)(αk).

The sum over k is a symmetric polynomial in adα1, . . . , adαk with integral coefficients,
hence it is an integral linear combination of elementary symmetric functions of them, and
hence also of the 2d numbers adΘε, which in turn implies that they are integral linear
combinations of elementary symmetric functions in the numbers adθ1, . . . , adθd, hence an
integral linear combination of the coefficients of mθ, hence a rational integer. Also, for
j < p, f (j)(αk) = 0, for j 6= p− 1, p! | f (j)(0), and

f (p−1)(0) = (p− 1)!(−ad)np(α1 · · ·αn)p



6 ERAN ASSAF

is divisible by (p − 1)!, and not by p!, if p is sufficiently large, hence if p > ad, then
|J | ≥ (p− 1)!, but again

|J | ≤
n∑
k=1

|αk|e|αk|f(|αk|) ≤ cp

for some c independent of p, hence for p large enough, we get a contradiction.
�

These two theorems are a special case of the following, more general, theorem.

Theorem 10 (Lindemann-Weierstrass). Let α1, . . . , αn be distinct algebraic numbers, and
let β1, . . . , βn nonzero algebraic numbers. Then

β1e
α1 + . . .+ βne

αn 6= 0.

Corollary 11. If α1, . . . , αn are Q-linearly independent algebraic numbers, then eα1 , . . . , eαn

are algebraically independent.

Proof of Corollary. Assume p(x1, . . . , xn) ∈ Q[x1, . . . , xn] is such that p(eα1 , . . . , eαn) = 0.

Write p(x) =
∑

d∈Zn≥0
adx

d where xd =
∏n
k=1 x

dk
k . Then

0 = p(eα1 , . . . , eαd) =
∑
d∈Zn≥0

ade
∑n
k=1 dkαk .

Note that if c 6= d ∈ Zn≥, and
∑n

k=1 dkαk =
∑n

k=1 ckαk, then
∑n

k=1(ck − dk)αk = 0 but by
assumption this implies ck = dk for all k. Therefore, all the exponents in the above sum
are distinct. From the theorem, it follows that all the coefficients vanish, i.e. ad = 0 for all
d, showing that the eαk are algebraically independent. �

Corollary 12. If α 6= 0 is algebraic, then eα, cosα, sinα and tanα are transcendental. If
also α 6= 1, then logα is transcendental.

Proof. The first statement is the previous corollary with n = 1. Then if cosα = eiα+e−iα

2

is algebraic, then x = eiα satisfies x + x−1 = 2 cosα, i.e. x2 − 2 cosαx + 1 = 0, so it is
algebraic over Q(cosα), hence over Q. But as iα 6= 0 is algebraic, this is a contradiction. For

sinα = eiα−e−iα
2i , the proof is similar. If tanα is algebraic, then from (tan2 α+1)−1 = cos2 α,

we obtain that cosα is also algebraic. Finally, if α /∈ {0, 1}, then logα 6= 0 is algebraic,
hence α = elogα is transcendental. �

Finally, let us prove the theorem

Proof. Assume
∑n

k=1 βke
αk = 0. We may assume that βk ∈ Z (otherwise, multiply all

conjugate expressions to obtain rationals, and scale by a common denominator). Let
p(x) ∈ Z[x] be a polynomial of degree N that has α1, . . . , αn as roots, and let αn+1, . . . , αN
be its other roots. Considering the expression∏

σ∈SN

(β1e
ασ(1) + . . .+ βNe

ασ(N)),
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where βn+1 = . . . = βN = 0, we obtain a linear combination of terms e
∑N
k=1 hkαk where the

hk sum to N !, and the exponents form a complete set of conjugates. Symmetry ensures
that a complete set of conjugates for such a linear expression has the same coefficient (a
symmetric function of the original βk, and by ordering C, e.g. lexicographically, we can
look at the coefficient of the exponent of highest degree, and see that it is nonzero. Let `
be a positive integer such that `α1, . . . , `αk, `β1, . . . , βk are all algebraic integers, and let

fi(x) = `np
(x− α1)p · · · (x− αn)p

x− αi
,

where p is a large prime. Consider

Ji = β1Ii(α1) + . . .+ βnIi(αn),

where Ii(s) = Ifi(s) and consider estimates for the product |J1 · · · Jn|. We proceed as
before. From the first Lemma

Ji =
n∑
k=0

βk

eαk np−1∑
j=0

f
(j)
i (0)−

np−1∑
j=0

f
(j)
i (αk)

 = −
n∑
k=0

βk

np−1∑
j=0

f
(j)
i (αk),

and f
(j)
i (αk) is an algebraic integer divisible by p! unless i = k and j = p−1, in which case

we have

f
(p−1)
i (αi) = `np(p− 1)!

n∏
k 6=i

(αi − αk)p,

so if p is large enough, it is divisible by (p − 1)!, but not by p!. It follows that Ji is an
algebraic integer divisible by (p − 1)!. Further, our symmetry assumption implies that
J1 · · · Jn is a rational integer, hence a rational integer divisible by ((p − 1)!)n, but again
we can bound each term by an exponential in p, leading to a contradiction if p is large
enough. �

3. summary

We have seen the definition of separable polynomials, and investigated separability.
This led us to consider the Frobenius endomorphism over fields of characteristic p > 0, and
naturally to the definition of a perfect field, which include all characteristic 0 fields and all
finite fields. We have used what we learned today and in the previous lesson to show the
existence and uniqueness of a finite field of size q = pn.

Finally, we have seen that over a perfect field all algebraic extensions are separable, and
introduced the notions of a separable and inseparable degrees of a polynomial.

We will return to this notion after learning some more Galois theory.


