
LESSON 6 (X-HOUR) - FIELD EXTENSIONS

ERAN ASSAF

1. Introduction

Last lesson we discussed criteria for irreducibility of polynomials, such as Eisenstein’s
criterion and Gauss’s Lemma. Today we will start learning field theory and field extensions.

2. Field Extensions

Let F be a field.

Definition 1. The prime subfield of F is the subfield of F generated by 1F .

Since F is an integral domain, it either has a subring isomorphic to Z, or a subring
isomorphic to Fp for a prime p. If the former, then F contains Q, as it is a field. In this
case, we say that the characteristic of F is 0 and Q is the prime subfield of F . In the
latter case, we say that the characteristic of F is p and Fp is the prime subfield of F .

Definition 2. If F is a subfield of K, we say that K is an extension field (or a field
extension or an extension) of F , denoted K/F or as follows.

K

F

The field F is called the base field.

Definition 3. The degree of a field extension K/F , denoted [K : F ] is dimF K, the
dimension of K as a vector space over F . The extensions is finite if [K : F ] is finite, and
infinite otherwise.

What field extensions do we already know?

Example 4. C/R is a finite extension of degree 2, R/Q is an infinite extension, F (t) is
an infinite extension of F .

Definition 5. Let K/F be an extension and let {αi}i∈I be elements in K. Then the
smallest subfield of K containing F and the elements {αi}i∈I is denoted F (αi) and called
the field generated by {αi}i∈I over F .
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3. Simple Extensions

Definition 6. If K = F (α) is generated by a single element α over F , then K is a simple
extension of F and α is a primitive element for the extension.

Example 7. C = R(i).

Example 8. Consider the element
√

2 ∈ R in the extension R/Q. Then Q(
√

2) = {a +
b
√

2 : a, b ∈ Q}. Indeed, we have seen that the RHS is a field, it contains Q and
√

2,
and any field containing Q and

√
2 clearly contains the RHS. Note that we can also form

Q(−
√

2), which turns out to be the same. In particular, [Q(
√

2) : Q] = 2.

Example 9. With some more work, one can show that {a + b 3
√

2 + c( 3
√

2)2 : a, b, c ∈ Q}
is also a subfield of R, hence it is Q( 3

√
2), and [Q( 3

√
2) : Q] = 3. In this case, the equation

x3−2 = 0 has no other solutions in R, but there are two additional solutions in C given by
ζ3

3
√

2 and ζ23
3
√

2. The fields they generate are subfields of C that are isomorphic to Q( 3
√

2).

Theorem 10. Let p(x) ∈ F [x] be irreducible. Assume K/F is an extension containing a
root α of p(x), i.e. p(α) = 0. Then

F (α) ' F [x]/(p(x)).

Proof. The evaluation map evα : F [x] → F (α) sending f(x) 7→ f(α) is a ring homomor-
phism. By assumption evα(p(x)) = p(α) = 0, so p(x) ∈ ker evα. But p(x) is irreducible,
hence (p(x)) is maximal and we obtain (p(x)) = ker evα. (Note that evα(1) = 1, so
ker evα 6= F [x]). Thus, evα induces a field extension F [x]/(p(x)) ↪→ F (α). Since evα(x) = α,
the image is a subfield of K containing both F and α, hence by minimality of F (α), the
map is surjective, and we obtain an isomorphism. �

Example 11. Consider p(x) = x2 + 1 ∈ R[x]. C/R contains α = i. Then C = R(i) '
R[x]/(x2+1). Indeed, one can check that a+ bi 7→ a+ bx is an isomorphism.

Example 12. Similarly, Q(i) ' Q[x]/(x2+1), Q(
√

2) ' Q[x]/(x2−2) and Q( 3
√

2) ' Q[x]/(x3−2).

Corollary 13. Under these hypotheses [F (α) : F ] = deg p(x).

Proof. Let n = deg p(x), we will show that {1, α, . . . , αn−1} is a basis for F (α) over F .
Indeed, by the theorem it’s enough to show that {1, x, . . . , xn−1} is a basis for F (x)/(p(x))
over F . If f(x) ∈ F [x], we can write f(x) = q(x)p(x)+r(x) for some q(x), r(x) ∈ F [x] with

deg r(x) < n or r(x) = 0. Therefore, f(x) = r(x) is a linear combination of {1, x, . . . , xn−1},
showing that it is a spanning set. Also, if

∑n−1
i=0 aix

i = 0, then f(x) =
∑n−1

i=0 aix
i ∈ (p(x)),

which implies f(x) = 0 since deg f(x) < n. Therefore, they are also linearly independent,
hence a basis. �

Example 14. The polynomial p(x) = xn−2 is irreducible over Q by Eisenstein’s criterion.
Therefore [Q( n

√
2) : Q] = n.

Example 15. We have seen that the polynomial p(x) = x3 − 3x− 1 is irreducible over Q,
hence for any root α of p(x), [Q[α] : Q] = 3.
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Theorem 16 (The Tower Law). Let F ⊆ K ⊆ L be fields. Then

[L : F ] = [L : K][K : F ].

Proof. Write m = [K : F ] and n = [L : K], and let α1, . . . , αm be a basis for K over F ,
β1, . . . , βn a basis for L over K. We will show that {αiβj}m,ni,j=1,1 is a basis for L over F .

Indeed, if
∑

i.j aijαiβj = 0, then since the βj are linearly independent over K, we have∑
i aijαi = 0 for all j. But the αi are linearly independent over F , hence all the aij vanish,

showing that αiβj are linearly independent over F . Moreover, if γ ∈ L, as the βj span L
over K, we can write γ =

∑
j bjβj for some bj ∈ K. But the αi span K over F , hence for

each j there are aij such that bj =
∑
aijαi, thus γ =

∑
aijαiβj , showing that αiβj span

L over F . �

Corollary 17. If L/F is a finite extension, and F ⊆ K ⊆ L is a subfield containing F ,
then [K : F ] divides [L : F ].

Example 18. Let α be the real root of x3 − 3x− 1 in the interval [0, 2]. The element
√

2
is not contained in the field Q(α), since [Q(

√
2) : Q] = 2 and [Q(α) : Q] = 3.

4. summary

We have seen the construction of simple field extensions, and discussed some of the
properties of field extensions. We have seen how the complex numbers are an example
of such a construction, and found a basis for the extension as a vector space. We have
used it to compute the degree of an extensions, and to prove the tower law, and have
seen an example of how the tower law can be used to obtain interesting results about field
extensions.


