
LESSON 9 - SPLITTING FIELDS

ERAN ASSAF

1. Introduction

Last lesson we have learned how to apply basic ideas from field theory to constructions
with straight-edge and compass, and solved some very difficult problems. Remember that
we still need to figure out which regular polygons are constructible. For that we need
to develop some more theory, related to roots of unity. In addition, progressing towards
solvability of equations, we want to be able to talk about symmetries of roots. For that, it’s
easier to take as a starting point a field in which we can see all the roots of the polynomial.
These are called splitting fields, and will be our topic today.

2. Definition and examples

Definition 1. An extension K/F is called a splitting field for f(x) ∈ F [x] if f(x)
factors completely into linear factors ( splits completely) in K[x] and f(x) does not
split completely over any proper subfield of K.

Example 2. The splitting field for (x2 − 5)(x2 + 1) over Q is the field Q(
√

5, i). Clearly
[Q(
√

5, i) : Q] = 4, and we have the following diagram of subfields.

Q(
√

5, i)

Q(
√

5) Q(
√
−5) Q(i)

Q

22
2

22
2

Example 3. The splitting field of x3 − 2 over Q is not just Q( 3
√

2) ⊆ R, as this field only
includes one of the roots. We have to adjoin also ζ3, and obtain Q( 3

√
2, ζ3). We have seen

that [Q( 3
√

2, ζ3) : Q] = 6, and we have the following diagram of subfields.
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Q( 3
√

2, ζ3)

Q( 3
√

2) Q(ζ3
3
√

2) Q(ζ23
3
√

2)

Q(ζ3)

Q

3

2 2

2

2

3 3

3

Example 4. The splitting field of x4 + 4 over Q is Q(i), and [Q(i) : Q] = 2. Indeed, the
roots are ±1± i.

Example 5. Assume ch(F ) = p 6= 0, and let f(x) = xp − x− a ∈ F [x]. Let α be a root of
f(x) in some extension of F . Then the other roots are α+ 1, . . . , α+ p− 1, so the splitting
field of f is F (α).

Example 6. Let f(x) = ax2 + bx+ c ∈ Q[x], and let α =
√
b2 − 4ac ∈ C. Then Q(α) ⊆ C

is a splitting field of f(x).

Example 7. Let f(x) = ax3 + bx2 + cx + d ∈ Q[x] be irreducible, and let α1, α2, α3 ∈ C
its complex roots. Then Q(α1, α2, α3) = Q(α1, α2) is a splitting field for f(x). Note that
[Q(α1) : Q] = 3 and [Q(α1, α2) : Q(α1)] ∈ {1, 2}, so [Q(α1, α2) : Q] ∈ {3, 6}.

3. Existence of a splitting field

Theorem 8. For any f(x) ∈ F [x], there exists a splitting field Kf for f(x), and if
deg f(x) = n, then

[Kf : F ] ≤ n!.

Proof. We first show the existence of an extension K/F where f(x) splits completely, with
[K : F ] ≤ n! by induction on n. If n = 1, then K = F . Assume n > 1, and write
f(x) =

∏
fi(x) with fi(x) ∈ F [x] irreducible. If deg fi(x) = 1 for all i, then K = F .

Otherwise, there exists i with deg fi(x) ≥ 2. Consider K1 = F [x]/fi(x), and write α for
the image of x, then fi(α) = 0 hence fi(x) (and a fortriori f(x)) has a linear factor x− α
in K1[x]. Write f(x) = p(x)(x − α) in K1[x]. Then deg p(x) = n − 1, and by induction
there is an extension K/K1 where p(x) splits completely, with [K : K1] ≤ (n − 1)!. Then
f(x) also splits completely in K, and by the tower law

[K : F ] = [K : K1][K1 : F ] ≤ (n− 1)! · n = n!.

Let Kf be the intersection of all the subfields of K in which f(x) splits completely. �

Example 9. Let f(x) = xn − 1. If ζn = e2πi/n ∈ C is a primitive n-th root of unity, then
the other roots of unity are ζ2n, . . . , ζ

n−1
n , so the splitting field of xn− 1 is Q(ζn). This field

is called the cyclotomic field of n-th root of unity.
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When n = p is a prime, we already know that [Q(ζp) : Q] = p − 1. In a few lessons we
will also compute the degree of Q(ζn) for n composite.

Example 10. Let p be a prime. The splitting field of xn− p is Q(ζn, n
√
p). If n = q is also

prime, then [Q(ζq) : Q] = q − 1 and [Q( q
√
p : Q] = q, so [Q(ζq, q

√
p) : Q] = q(q − 1). This

shows also that xq − p remains irreducible in Q(ζq).

Our next goal would be to show that the splitting field is in fact unique (up to isomor-
phism).

4. Extensions and Uniqueness

In order to prove uniqueness of the splitting field, the idea will be to proceed by induction.
However, for the argument to work, we need to prove something slightly more general. (e.g.
as in proving by induction that

∑
2−n < 2).

Recall that when we have an isomorphism of fields ϕ : F1 → F2, it can be extended to an
isomorphism ϕ̃ : F1[x]→ F2[x]. In particular, if p1(x) ∈ F [x] is an irreducible polynomial,
and p2(x) = ϕ̃(p1(x)) ∈ F2[x], we have an isomorphism

F1[x]/(p1(x))
'−→ F2[x]/(p2(x)).

If α is a root of p1(x) and β is a root of p2(x), we obtain an isomorphism ϕα : F1(α)→ F2(β)
extending ϕ : F1 → F2. We represent it by the following diagram.

ϕα : F1(α) F2(β)

ϕ : F1 F2

∼

∼

We use this idea to prove the following theorem.

Theorem 11. Let ϕ : F1 → F2 be an isomorphism of fields. Let f1(x) ∈ F1[x], and
let f2(x) = ϕ̃(f1(x)) ∈ F2[x]. Let E1 be a splitting field for f1(x) over F1 and let E2 be
a splitting field for f2(x) over F2. Then the isomorphism ϕ extends to an isomorphism
ϕE : E1 → E2, i.e. ϕE |F1 = ϕ.

ϕE : E1 E2

ϕ : F1 F2

∼

∼

Proof. We proceed by induction on n = deg f(x). If f1(x) splits completely in F1, then
f2(x) splits completely in F2, so that E1 = F1 and E2 = F2 and we can set ϕE = ϕ.
Otherwise, f1(x) has an irreducible factor p1(x) with deg p1(x) ≥ 2. Let α ∈ E1 be a
root of p1(x), and let β ∈ E2 be a root of p2(x) = ϕ̃(p1(x)). Then we can extend ϕ to an
isomorphism ϕα : F1(α)→ F2(β). We now apply the induction step to ϕα and f1(x)/p1(x),
noting that E1, E2 remain their splitting fields. �

Corollary 12. Any two splitting fields for f(x) ∈ F [x] over a field F are F -isomorphic.



4 ERAN ASSAF

5. summary

We have seen the definition of a splitting field, and exhibited (plenty of) examples.
We have seen that there exists a unique (up to F -isomorphism) splitting field for every
polynomial. Next lesson we will talk about separability, and use these two notions to find
all finite fields.


