
LESSON 8 - STRAIGHT-EDGE AND COMPASS CONSTRUCTIONS

ERAN ASSAF

1. Introduction

Last lesson we introduced the notion of algebraic extensions, we have shown that the
finite extensions are the algebraic extensions which are generated by finitely many elements.
We have shown that ”algebraic over algebraic is algebraic”, and that all algebraic numbers
form a field. The last thing we did was to define the compositum (composite field) of
two field extensions. We will start the lesson by better understanding the degree of the
compositum, and move on to relate what we have learned to constructions with straight-
edge and compass.

2. Composite field

Example 1. The composite of K1 = Q(
√

2) and K2 = Q( 3
√

2) is K = Q( 6
√

2). Indeed,
K1,K2 ⊆ K, and conversely, any field containing K1 and K2 would contain

√
2/ 3
√

2 = 6
√

2.

Definition 2. Let K1,K2 be two finite extensions of F contained in K. We say that K1

and K2 are linearly disjoint if an F -basis for K2 remains linearly independent over K1.

Proposition 3. Let K1,K2 be two finite extensions of F contained in K. Then

[K1K2 : F ] ≤ [K1 : F ][K2 : F ].

with equality if and only if K1,K2 are linearly disjoint.

Proof. Let α1, . . . , αm be a basis for K1 over F and let β1, . . . , βn be a basis for K2 over
F . Then

K1K2 = F (α1, . . . , αm, β1, . . . , βm) = K1(β1, . . . , βn),

and since β1, . . . , βn span K2 over F , βiβj =
∑
aijlβl for some aijl ∈ F . Let L = {

∑
clβl :

cl ∈ K1}. The above shows that L is closed under addition and. multiplication. Since every
element γ ∈ L is algebraic over F , we can write its inverse as a polynomial γ−1 = pγ(γ) ∈ L.
Therefore, L is a field which contains both K1 and K2, hence L = K1K2 and β1, . . . , βn
span K1K2 over K1. It follows that [K1K2 : K1] ≤ n = [K2 : F ] with equality if and only
if the βj are linearly independent over K1. Since [K1K2 : F ] = [K1K2 : K1][K1 : F ], this
proves the proposition. �

Corollary 4. The notion of linear disjointness does not depend on the choice of basis, or
on the order of the fields.

Corollary 5. Suppose that [K1 : F ] = m and [K2 : F ] = n with m,n relatively prime.
Then [K1K2 : F ] = mn.
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Proof. We have m | [K1K2 : F ] and n | [K1K2 : F ], hence mn = lcm(m,n) | [K1K2 : F ].
Together with [K1K2 : F ] ≤ mn, we are done. �

Example 6. [Q(
√

2)Q( 3
√

2) : Q] = 6.

3. Straightedge and compass constructions

The idea of constructions with straight-edge and compass is simple - we are only allowed
to construct circles with center at a point we have constructed, passing through another
point, and lines passing through two points that we have constructed. The points are
constructed as intersection points of lines and circles we have constructed.

Since we need some measurement to compare to and set things to scale, constructing a
number means given a segment of length 1, to construct a segment of that length.

Definition 7. A real number α ∈ R is constructible if a segment of length α can be
constructed by successive iterations of

• lines drawn through two points already constructed.
• circles with center a point already constructed and radius a constructed length.
• finding the points of intersection of lines and circles already constructed.

given a segment of length 1.

Example 8. 2 is constructible. Given a segment of length 1 - AB, we draw the circle with
center at A and passing through B, and we draw the line passing through A and B. Denote
its second intersection with the circle by C. Then BC is of length 2.

Some simple constructions -

(1) can construct a perpendicular bisector of a segment. (intersect two circles).

(2) can construct a line passing through a point and perpendicular to another line.
(choose a point on the line, construct the segment connecting the two points, bisect
it, and construct the circle whose diameter is the segment. The other intersection
point of the circle with the line gives the altitude).
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(3) can construct a line parallel to a given line through another point. (construct an
altitude not passing through the point, and then an altitude from the point to it).

(4) can construct a translate of a segment through a given point. (draw the line parallel
to the segment through the point, connect one of the endpoints to it, and draw the
line parallel to it through the other endpoint, to form a parallelogram).

In particular, if we have two segments of length a, b we can translate one of them so they
will have a common endpoint, and by drawing a circle with this point as center, obtain
segments of length a+ b and a− b.
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Corollary 9. All integers Z are constructible.

Proposition 10. The constructible numbers form a field.

Proof. Thales’s theorem.

�

Corollary 11. All rationals Q are constructible.

Proposition 12. If a is constructible, so is
√
a.

Proof. Construct a circle with diameter 1 + a and erect the perpendicular to the diameter
at the point separating 1 : a.

Similarity of triangles yields the result. �
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4. Impossibility of constructions

Introducing coordinates to the plane (x, y) ∈ R2, we can equivalently ask what are all
constructible points in R2. Assume we have constructed some number by performing N
constructions. Let Fn ⊆ R be the subfield generated by the numbers we have constructed
after n steps. Passing two lines and intersecting them gives us a linear equation, whose
solution will have coordinates in Fn. An intersection of a line with a circle will construct
points in a quadratic extension of Fn, and so will an intersection of two circles. Therefore,
[Fn+1 : Fn] ≤ 2, hence if α ∈ R is constructible, [Q(α) : Q] = 2m for some m.

Theorem 13. If α ∈ R is constructible, [Q(α) : Q] = 2m for some m.

Corollary 14. It is impossible to double the cube, trisect an angle or square the circle.

Proof. Doubling the cube implies constructing a segment of length 3
√

2, but it is of degree
3. Constructing an angle θ is equivalent to constructing cos θ, so trisecting the angle is the
same as constructing cos θ/3 given cos θ. To see that this is not always possible, consider
θ = 60◦ = π/3. Then from cos θ = 4 cos θ/33 − 3 cos θ/3, if we write β = cos 20◦ we get
4β3 − 3β − 1/2 = 0. Let α = 2β, then α3 − 3α − 1 = 0, so α is the unique root in [0, 2]
of x3 − 3x − 1. In particular, [Q(α) : Q] = 3. Finally, squaring the circle is equivalent to
constructing

√
π, but π is transcendental. �

Proposition 15. Let p be a prime. A regular p-gon is constructible only if p = 22
n

+ 1 for
some n is a Fermat prime.

Proof. To construct a regular p-gon, we need to construct an angle of 2π/p, hence cos(2π/p) =
(ζp + ζ−1

p )/2. Note that Q[cos(2π/p)] ⊆ Q(ζp), and that

(2 cos(2π/p))ζp = (ζp + ζ−1
p )ζp = ζ2p + 1 =⇒ ζ2p − 2 cos(2π/p)ζp + 1 = 0,

so that f(x) = x2 − 2 cos(2π/p)x + 1 has ζp as a root. Since ζp /∈ R, it follows that
[Q(ζp) : Q(cos(2π/p))] = 2. From the identity Φp(x) = xp−1+ . . .+x+1 = (xp−1)/(x−1),
we see that Φp(ζp) = 0, and we have seen that Φp(x) irreducible over Q, hence [Q(ζp) :

Q] = p − 1. Using the tower law, we obtain [Q(cos 2π/p) : Q] = p−1
2 . If the regular p-gon

is constructible, then p−1
2 = 2m−1 for some m, hence p = 2m + 1. Moreover, note that if

m = dr with r odd, we have

2m + 1 = (2d + 1)(2(r−1)d − 2(r−2)d + 2(r−3)d − . . .− 2d + 1).

Therefore, if m has an odd factor r > 1, then it is composite. In particular, the fact that
p = 2m + 1 is prime, implies m does not have any odd prime factors, hence m = 2n. �

5. summary

We have seen how field theory solves some centuries-old problems that mathematicians
have grappled with (!!) We have seen a necessary condition for numbers to be constructible
using straight-edge and compass, and applied it to a variety of problems - doubling the cube,
trisecting the angle, squaring the circle. We still haven’t completely solved the problem of
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which regular n-gons can be constructed, although we do have a necessary condition for
prime ones, showing for example that it is impossible to construct a regular heptagon(!)


