
LESSON 7 - ALGEBRAIC EXTENSIONS

ERAN ASSAF

1. Introduction

Last lesson we defined field extensions, and constructed simple extensions. We have
seen how to construct a basis and used it to compute the degree of an extension and to
prove the tower law. Today, we will look at larger classes of extensions, namely algebraic
extensions, and classify which algebraic extensions are finite.

2. Algebraic Extensions

Definition 1. Let K/F be a field extension. α ∈ K is algebraic over F if there exists a
0 6= f(x) ∈ F [x] such that f(α) = 0. If not, α is transcendental over F . The extension
K/F is algebraic if every element of K is algebraic over F .

Proposition 2. Let α ∈ K be algebraic over F . There exists a unique monic irreducible
mα,F (x) ∈ F [x] with mα,F (α) = 0. For f(x) ∈ F [x], f(α) = 0 iff mα,F (x) | f(x).

Proof. Consider the map evα : F [x] → K. Since α is algebraic, it has a nontrivial kernel
I, and F [x]/I ↪→ K is a subring. In particular, as K is a field, it is an integral domain,
implying that I is a prime ideal. But F [x] is a PID, so I = (mα,F (x)) for some irreducible
monic polynomial. �

Corollary 3. If α is algebraic over F and L/F is a field extension, then it is algebraic
over L and mα,L(x) | mα,F (x).

Definition 4. The polynomial mα(x) = mα,F (x) is the minimal polynomial for α over
F . The degree of α is degα = degmα(x).

Example 5. Over Q the minimal polynomial of n
√

2 is xn − 2, but over R it is x− n
√

2.

Corollary 6. If α is algebraic, [F (α) : F ] = degα. In particular, F (α) is finite.

In fact, also the converse holds.

Proposition 7. If F (α)/F is finite, then α is algebraic.

Proof. Assume [F (α) : F ] = n, then the elements 1, α, . . . , αn are linearly dependent, so
there exists ai ∈ F such that

∑
aiα

i = 0, hence α is algebraic over F . �

Corollary 8. If K/F is finite, it is algebraic.

Proof. For any α ∈ K, F (α) ⊆ K, hence [F (α) : F ] ≤ [K : F ] < ∞, so F (α) is finite,
hence α is algebraic. �
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We would like to characterize finite extensions. Note that there are infinite algebraic
extensions, for example Q(

√
2, 3
√

2, . . . , n
√

2, . . .). Indeed, for any n it contains the degree
n extension Q( n

√
2), showing it is infinite, and if we have some linear combination of

x =
∑
ai

ni
√

2
ei

, taking n = lcm(ni), we see that x ∈ Q( n
√

2) is algebraic. Therefore, we
need something more subtle.

Definition 9. An extension K/F is finitely generated if there are elements α1, . . . , αk ∈
K such that K = F (α1, . . . , αk).

Lemma 10. F (α, β) = F (α)(β).

Proof. The field F (α, β) contains F (α) and β hence F (α)(β) ⊆ F (α, β). Conversely, the
field F (α)(β) contains F , α and β, hence it contains F (α, β). �

Theorem 11. K/F is finite iff K is generated by finitely many algebraic elements over
F . More precisely, if K = F (α1, . . . , αm) with ni = degαi then [K : F ] ≤

∏
ni.

Proof. If [K : F ] = n, let α1, . . . , αn be a basis. Then the αi are algebraic over F , and
K = F (α1, . . . , αn). Conversely, if K = F (α1, . . . , αm), write Fi = F (α1, . . . , αi) so that

F = F0 ⊆ F1 ⊆ . . . ⊆ Fm = K.

and by the lemma Fi = Fi−1(αi) are simple algebraic extensions, so [Fi : Fi−1] = degFi−1
αi ≤

degF αi = ni. By the tower law, [K : F ] =
∏

[Fi : Fi−1] ≤
∏
ni. �

Corollary 12. Let K/F be a field extension. The elements of K algebraic over F form a
subfield of K.

Proof. Let α, β ∈ K be algebraic over F with β 6= 0. Then α ± β, αβ, α/β ∈ F (α, β).
Since F (α, β) is generated by finitely many algebraic elements over F , it is finite, hence
algebraic. It follows that the algebraic elements are closed under these operations, showing
that it is a subfield. �

Example 13. Let Q ⊆ C be the subfield of all elements in C algebraic over Q. It is an
infinite algebraic extension of Q, the field of algebraic numbers.

Example 14. Note that Q is countable, hence so is Q[x], showing that Q is countable. In
particular, since R is uncountable, there are elements in R that are not algebraic over Q.

Theorem 15. If K/F is algebraic and L/K is algebraic, then L/F is algebraic.

Proof. Let α ∈ L. Then it is algebraic over K, so there exist a0, . . . , an ∈ K such that

anα
n + . . .+ a1α+ a0 = 0.

The ai are all in K, hence algebraic over F . It follows that the field F (a0, . . . , an) is
generated by a finite number of algebraic elements over F , hence is a finite extension of F .
But α is algebraic over F (a0, . . . , an), hence

[F (a0, . . . , an, α) : F ] = [F (a0, . . . , an, α) : F (a0, . . . , an)][F (a0, . . . , an) : F ] <∞
is finite, hence algebraic. In particular, α is algebraic over F . �

Definition 16. Let K1,K2 be subfields of K. The composite field of K1 and K2, denoted
K1K2 is the smallest subfield of K containing both K1 and K2.
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3. summary

We have discussed algebraic and transcendental extensions, introduced the minimal poly-
nomial, and looked at finitely generated extension. We have seen that an algebraic exten-
sion of an algebraic extension is still algebraic, and considered the construction of composite
fields. Finally, we have reminded ourselves what we need to know to construct things with
straight-edge and compass.


