
LESSON 5 - IRREDUCIBILITY CRITERIA

ERAN ASSAF

1. Introduction

Last lesson we have shown that polynomial rings over a field are UFD, and that the
prime ideals correspond to monic irreducible polynomials. Today we will see some ways to
find roots of polynomials and proving their irreducibility, will talk about irreducibility of
polynomials and their factorization.

2. roots of polynomials

Proposition 1. Let F be a field, f(x) ∈ F [x]. Then f(x) has a factor of degree 1 if and
only if f(x) has a root in F , i.e. there is α ∈ F such that f(α) = 0.

Proof. Since F is a field, we may assume the factor p(x) | f(x) is monic, hence of the
form p(x) = x − α for some α ∈ F . But then p(α) = 0, so f(α) = 0. Conversely,
assume f(α) = 0. Since F [x] is Euclidean we can write f(x) = q(x)(x − α) + r(x) where
deg r(x) < deg(x − α) = 1 or r(x) = 0. It follows that r(x) = r ∈ F is constant, and
evaluating at α we obtain

0 = f(α) = q(α)(α− α) + r = 0 + r = r,

hence r = 0, and x− α | f(x). �

Corollary 2. Let f(x) ∈ F [x] be with deg f(x) ∈ {2, 3}. Then f(x) is reducible if and
only if it has a root in F .

Proof. f(x) is reducible iff it has a linear factor, so by Proposition 1 we are done. �

Example 3. The polynomial f(x) = x2 + x+ 1 is irreducible in F2[x] = (Z/2Z)[x], since
f(0) = f(1) = 1. Similarly, x3 + x+ 1 is irreducible in F2[x].

Proposition 4. If the polynomial f(x) ∈ F [x] has roots α1, . . . , αk (not necessarily dis-
tinct), then f(x) has (x− α1) · · · (x− αk) as a factor. In particular, if deg f(x) = n, then
f has at most n roots in F , counting multiplicities.

Proof. The first statement follows by induction from Proposition 1. Since linear factors
are irreducible, the second statement follows since F [x] is a UFD. �

Proposition 5. Let p(x) = anx
n + . . .+ a0 ∈ Z[x], and let r, s ∈ Z be such that (r, s) = 1

and p(r/s) = 0. Then r | a0 and s | an.
1
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Proof. By assumption
0 = p(r/s) = an(r/s)n + . . .+ a0.

Multiply by sn to obtain

0 = anr
n + an−1r

n−1s+ . . .+ a1rs
n−1 + a0s

n.

Then s | anrn, but (r, s) = 1 so s | an. Similarly, r | a0sn, hence r | a0. �

Example 6. The polynomial p(x) = x3 − 3x − 1 is irreducible in Z[x]. Indeed, if it were
reducible, it were also reducible in Q[x]. However, by Corollary 2, that means it would have
a root in Q. Write r/s ∈ Q in lowest terms. By Proposition 5, we must have r, s | 1, hence
r/s = ±1, but p(1) = −3, p(−1) = 1 so p(x) does not have a rational root.

Proposition 7. Let I be a proper ideal in the integral domain R, and let p(x) be a non-
constant monic polynomial in R[x]. Let π̃ : R[x]→ (R/I)[x] be the natural map. If π̃(p(x))
is irreducible, then so is p(x).

Proof. Assume that p(x) = a(x)b(x) for some a(x), b(x) ∈ R[x]. Then, as p(x) is monic,
we may assume a(x) and b(x) are monic. Since π̃(p(x)) = π̃(a(x))π̃(b(x)) and π̃(p(x))
is irreducible, w.l.o.g. we may assume π̃(b(x)) ∈ (R/I)[x]×. But b(x) is monic, hence
deg b(x) = 0, showing that b(x) ∈ R×, hence p(x) is irreducible. �

Example 8. The polynomials x2 + x+ 1 and x3 + x+ 1 are irreducible in Z[x] since they
are irreducible in (Z/2Z)[x].

Example 9. The polynomial x4− 22x2 + 1 is irreducible in Z[x] as can be checked directly
However, as we shall prove, it is reducible modulo every prime. (exercise!).

3. Eisenstein’s Criterion

The last proposition we have proved in the last lesson gave us a good tool to show
irreducibility of polynomials in R[x] by reducing the coefficients modulo an ideal I. A
special well-known case of that idea is the following criterion.

Theorem 10 (Eisenstein’s Criterion). Let P be a prime ideal of the integral domain R, and
let f(x) = xn+an−1x

n−1+. . .+a1x+a0 be a polynomial in R[x]. Suppose an−1, . . . , a1, a0 ∈
P and a0 /∈ P 2. Then f(x) is irreducible in R[x].

Proof. Assume, on the contrary, that f(x) = g(x)h(x) in R[x]. Let π : R → R/P be the
natural projection, and π̃ : R[x]→ (R/P )[x]. Then, by assumption

xn = π̃(f(x)) = π̃(g(x))π̃(h(x)) =: g(x)h(x).

Since P is a prime ideal, R/P is an integral domain, hence (x) ⊆ (R/P )[x] is a prime
ideal. It follows that either g(x) ∈ (x)n or h(x) ∈ (x)n or both g(x) ∈ (x) and h(x) ∈ (x).
Since R/P is an integral domain, xn | g(x) implies deg g(x) ≥ n, hence deg g(x) = n and
h(x) ∈ R is constant. Since f is monic, looking at the leading term we obtain h ∈ R×.
Similarly, if xn | h(x), then g is constant. Therefore, if both g, h are nonconstant, we must
have g(0) = h(0) = 0, whence

a0 = f(0) = g(0)h(0) ∈ P 2,
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contradiction. �

Pedestrian approach. Assume f(x) = g(x)h(x), where g(x) =
∑m

i=0 bix
i and h(x) =∑k

j=0 cjx
j . Since f is monic, we may assume g and h are monic, hence bm = ck = 1,

and m + k = n. Evaluating at 0, we see that b0c0 = g(0)h(0) = f(0) = a0 ∈ P . Since P
is a prime, it follows that either b0 ∈ P or c0 ∈ P . Assume without loss of generality that
b0 ∈ P . Since P is a prime ideal, it is proper, and 1 = bm /∈ P . Therefore, there exists a
minimal index i ∈ {1, . . . ,m} such that bi /∈ P . If i ≤ n − 1, then from f(x) = g(x)h(x)
we obtain

min(i,k)∑
j=0

cjbi−j = ai ∈ P,

but by minimality of i, for all j > 0, we have bi−j ∈ P , hence cjbi−j ∈ P so that c0bi ∈ P .
But bi /∈ P and P is prime, hence c0 ∈ P . However, then a0 = b0c0 ∈ P 2, contradiction.
Since m ≤ n, it then follows that i = m = n, hence that k = 0, and h(x) = 1, showing
that f is irreducible. �

Example 11. The polynomial xn − p ∈ Z[x] is irreducible for all primes p and all n ≥ 2.
In particular, we obtain another proof that n

√
p /∈ Q.

Example 12. The polynomial f(x) = x4 + 1 ∈ Z[x] is irreducible. Indeed, f(x) is irre-
ducible iff g(x) = f(x+ 1) is irreducible. But

g(x) = f(x+ 1) = (x+ 1)4 + 1 = x4 + 4x3 + 6x2 + 4x+ 2,

so by Eisenstein criterion with p = 2, g(x) is irreducible, hence so is f(x).

Example 13. Consider the polynomial

Φp(x) =
xp − 1

x− 1
= xp−1 + xp−2 + . . .+ x+ 1.

Then

Φp(x+ 1) =
(x+ 1)p − 1

x
= xp−1 + pxp−2 + . . .+

p(p− 1)

2
x+ p ∈ Z[x]

with all the coefficients but the first divisible by p. Hence, by Eisenstein’s criterion with p,
Φp(x) is irreducible in Z[x].

Example 14. Let R = Q[t], and consider xn − t ∈ R[x]. The ideal (t) is prime in R
since R/(t) = Q[t]/(t) ' Q is an integral domain. Eisenstein’s criterion for the ideal (t)
of R applies to show that xn − t is irreducible in R[x]. (Q can be replace by any integral
domain).

4. Gauss’ Lemma

We have seen ways to prove irreducibility of polynomials by reduction of coefficients.
However, if the coefficient ring is a field, e.g. in Q[x], there are no nontrivial ideals to reduce
by! However, there is something else we can do to prove irreducibility of polynomials
in F [x], when F is a field - we can ”clear denominators”. More precisely, if f(x) =
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g(x)h(x) ∈ Q[x], there exist some a, b ∈ Z such that ag(x), bh(x) ∈ Z[x], and so abf(x) =
(ag(x))(bh(x)) in Z[x]. Therefore, it suffices to prove irreducibility of f(x) in Z[x]. This is
the content of Gauss’ Lemma.

In order to state it in a more general setting, we need to formalize the relation between
Q and Z, and we recall that Q is the field of fractions of Z.

Definition 15. Let R be an integral domain. The field of fractions of R, F is the field
containing R satisfying the following universal property - any embedding ϕ : R ↪→ K to a
field K, factors uniquely through F .

R �
� //� o

∃!   

F� _

ϕ

��
K

Example 16. For Z this is Q, for the polynomial ring F [t], this is F (t), the function field
in one variable over F , consisting of rational functions.

Theorem 17 (Gauss’ Lemma). Let R be a UFD with field of fractions F , and let f(x) ∈
R[x]. If f(x) is reducible in F [x] then f(x) is reducible in R[x]. More precisely if f(x) =
g(x)h(x) for some nonconstant polynomials g(x), h(x) ∈ F [x], there are r, s ∈ F such that
G(x) = rg(x), H(x) = sh(x) ∈ R[x], and f(x) = G(x)H(x).

Proof. Clearing denominators, we obtain df(x) = g̃(x)h̃(x) for some 0 6= d ∈ R and

g̃(x) = ag(x), h̃(x) = bh(x) ∈ R[x]. If d ∈ R×, we can set r = d−1a, s = d−1b and we are
done. If not, since R is a UFD, we can write d as a product of irreducibles d = p1 · · · pn.
Since p1 is irreducible, the ideal (p1) is prime, so p1R[x] is prime in R[x] and (R/p1R)[x]
is an integral domain. Reducing modulo p1 we obtain

0 = df(x) = g̃(x) · h̃(x),

hence w.l.o.g. g̃(x) ∈ p1R[x]. But then p−11 g(x) ∈ R[x]. Therefore, replacing g̃(x) by

p−11 g̃(x) we obtain

p2 · · · pnf(x) = g̃(x)h̃(x).

We finish by induction on n, the number of irreducible factors of d. �

Example 18. Since x2 = (2x) ·
(
1
2x
)

in Q[x], it follows that x2 is reducible in Z[x].

Example 19. The polynomial 7x ∈ Z[x] is not irreducible, since 7 is not a unit, although
it is irreducible in Q[x].

Corollary 20. Let R be a UFD, with field of fraction F . Let p(x) = anx
n+. . .+a1x+a0 ∈

R[x] be such that gcd(a0, . . . , an) = 1. Then p(x) is irreducible in R[x] if and only if it is
irreducible in F [x]. In particular, if p(x) is a monic polynomial that is irreducible in F [x],
it is irreducible in R[x].

Proof. If p(x) = g(x)h(x) in R[x], from the assumption it follows that neither g nor h are
constant, hence it is also a factorization in F [x]. The converse is Gauss’s Lemma. �
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5. summary

Today we talked about way to determine irreducibility of polynomials. We have seen the
powerful Eisenstein criterion, and Gauss’s Lemma, which together allow us to determine
irreducibility of polynomials over Q[x] in many cases.

6. Appendix: Factorization of polynomials

There is an algorithm to factor polynomials in Q[x]. To see this, note that by clearing
denominators it’s enough to consider monic polynomials in Z[x]. From the fundamental the-
orem of algebra (which we will prove later on, but has many proofs), f(x) splits completely
in C[x], i.e. f(x) =

∏
i(x−αi) for some αi ∈ C. From the equation 0 = f(α) = αn+. . .+a0

it follows that |α| is bounded. Indeed, if |α| > 1 then

|α|n = |αn| =

∣∣∣∣∣
n−1∑
i=0

aiα
i

∣∣∣∣∣ ≤
n−1∑
i=0

|ai||α|i ≤ nmax
i
|ai||α|n−1,

showing that |α| ≤ nmaxi |ai|.
If g(x) is a monic factor of f(x) then its roots are some of the αi, and its coefficients

are symmetric polynomials in its roots. Therefore, we can bound the absolute value of
its coefficients in terms of the degree and the coefficients of f(x). Indeed, if g(x) =
xd + bd−1x

d−1 + . . . + b0 then |bj | ≤
(
n
j

)
nj max |ai|j . Since the coefficients are integers,

this reduces the problem to a finite search.
Of course, there are much faster methods. The one commonly used is the Berlekamp-

Zassenhaus algorithm, which uses the Chinese Remainder Theorem. Indeed, given the
bounds on the size of the coefficients, we can find primes p1, . . . , pm whose product is
larger, and then by the CRT it suffices to know the value of each coefficient modulo each
of the pi, i.e. the factorization modulo each of the primes. One factors the polynomial
over each Fp (there is an efficient method of doing that), and then one can search for
factorizations over Z[x] that have the correct form modulo each pi.


