
LESSON 4 - NOETHERIAN DOMAINS AND UNIQUE

FACTORIZATION DOMAINS (X-HOUR)

ERAN ASSAF

1. Introduction

Last lesson we recalled properties of ideals and of integral domains, we’ve proved that
the polynomial ring over a field is a Euclidean Domain, and that Euclidean Domains are
Principal Ideal Domains. Today, we are going to recall the definition of a Noetherian
Domain and a Unique Factorization Domain, show that a Principal Ideal Domain is a
Unique Factorization Domain, and in particular classify ideals in polynomial rings over
fields.

2. Noetherian Domains

Definition 1. A ring R is Noetherian if it satisfies the Ascending Chain Condition
on ideals. i.e. if any increasing chain of ideals

I1 ⊆ I2 ⊆ . . . ⊆ In ⊆ . . .

becomes stationery (stabilizes), i.e. there exists some N such that for all n > N one has
In = IN .

Theorem 2. Let R be a ring. TFAE:

(1) R is Noetherian.
(2) If Σ is nonempty set of ideals of R, then it contains a maximal element.
(3) Every ideal of R is finitely generated.

(1) =⇒ (2). : Choose some I1 ∈ Σ. If I1 is not maximal, there is some I2 ∈ Σ such that
I1 ( I2. Proceeding in this way, we produce an infinite increasing chain, which does not
stabilize, contradicting (1). Therefore, some In is maximal, proving (2).

[(2) =⇒ (3)]: Let I be an ideal of R, and let Σ be the collection of all finitely generated
ideals J ⊆ I. Since 0 ∈ Σ, it is nonempty. Therefore, it contains a maximal element J . If
J 6= I, let x ∈ I \ J . Since J ∈ Σ, J is finitely generated, hence so is the ideal J + xR,
contradicting the maximality of J , hence J = I is finitely generated.

[(3) =⇒ (1)]: Let I1 ⊆ I2 ⊆ . . . be an increasing chain of ideals. Then I =
⋃∞

n=1 In is
also an ideal. By assumption, it is finitely generated, say I = (a1, . . . , an). For every i =
1, 2, . . . , n, since ai ∈ I, there exists some mi such that ai ∈ Imi . Set m = max(m1, . . . ,mn).
Then a1, . . . , an ∈ Im, showing that I ⊆ Im, hence Ik = I for all k ≥ m. �
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Corollary 3. If R is a PID, then R is Noetherian (and every nonempty set of ideals
contains a maximal element).

Proof. Every ideal is generated by a single element, hence finitely generated. �

3. Unique Factorization Domains

Definition 4. Let R be an integral domain. An element 0 6= r ∈ R which is not a unit
is called irreducible if whenever r = ab with a, b ∈ R then either a ∈ R× or b ∈ R×.
Otherwise, r is called reducible.

Definition 5. A nonzero element p ∈ R is called a prime if the ideal (p) = pR is prime.
In other words, p is prime if whenever p | ab then either p | a or p | b.

Definition 6. Two elements a, b ∈ R are associate if there is u ∈ R× such that a = ub.

Proposition 7. If R is an integral domain, and p ∈ R is prime, then p is irreducible.

Proof. Assume p = ab for a, b ∈ R. Then, as p is prime, either a ∈ (p) or b ∈ (p). Assume
w.l.o.g. that a ∈ (p), then a = pu for some u ∈ R, hence 1 = ub, so b ∈ R× is a unit.
Therefore, p is irreducible. �

Example 8. In Z the irreducible elements are the prime numbers (and their negatives),
and a, b are associates iff a = ±b.

Proposition 9. If R is a PID, and p ∈ R is irreducible, then p is prime.

Proof. Let p be an irreducible element in R. We will show that (p) is maximal, hence
prime. Assume (p) ⊆ I for some ideal I. Since R is a PID, I = (a) for some a ∈ R. But
p ∈ (p) ⊆ (a), hence there exists some b ∈ R for which p = ab. Since p is irreducible, either
a ∈ R× or b ∈ R×. In the former case, 1 = a−1a ∈ (a), hence I = (a) = R, while in the
latter a = abb−1 = pb−1 ∈ (p), hence (a) = (p). It follows that either I = R or I = (p),
showing that I is maximal, hence prime. �

Definition 10. A Unique Factorization Domain is an integral domain R in which
every nonzero element r ∈ R which is not a unit can be written as a finite product of irre-
ducible elements pi ∈ R (not necessarily distinct) r = p1p2 · · · pn, and this decomposition is
unique up to associates. Namely if r = q1q2 · · · qm is another factorization into irreducibles,
then m = n and (possibly after renumbering) pi, qi are associates.

Example 11. A field F is a UFD.

Proof. Every nonzero element is a unit, hence the condition is empty. �

Example 12. The ring Z[
√
−5] = {a + b

√
−5 : a, b ∈ Z} is an integral domain which is

not a UFD, as one can see from the factorization (1 +
√
−5)(1−

√
−5) = 2 · 3. (Why are

2, 3, 1±
√

5 irreducible? How do we know they are not associate?)

Proposition 13. If R is a UFD, p ∈ R is prime ⇐⇒ p is irreducible.
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Proof. Assume p is irreducible, and p | ab. Write a =
∏

pi and b =
∏

qj as products of
irreducibles, then by uniqueness of decomposition we either have pu = pi, whence p | a or
pu = qj whence p | b. �

Theorem 14. If R is a Noetherian domain, every nonzero non-unit element can be written
as a product of irreducibles.

Proof. Consider the set A ⊂ R of nonzero non-units that do not admit a decomposition
into irreducible elements, and let Σ = {(a) : a ∈ A}. If Σ is nonempty, then since it is
a nonempty set of ideals and R is Noetherian, it contains a maximal element (a) ∈ Σ.
Since a is not irreducible, by definition, we can write a = bc for some b, c ∈ R, both of
them non-units. In particular, (a) ( (b), (a) ( (c). By maximality, it follows that b, c /∈ A,
so we can write b = p1p2 · · · pm and c = q1q2 · · · qn for some irreducibles pi, qj . Therefore
a = p1p2 · · · pmq1q2 · · · qn is a product of irreducible elements, a contradiction. Thus Σ is
empty. �

Theorem 15. Every PID is a UFD. In particular, every Euclidean Domain is a UFD.

Proof. Let R be a PID. Since R is Noetherian, a decomposition to irreducibles exists. It
remains to prove uniqueness of the decomposition a = p1 . . . pn. We proceed by induction
on the number n of irreducible factors in some factorization. If n = 1, a = p is irreducible.
Assume a = qc is some other factorization, starting with the irreducible q. Since p is
irreducible, and q is not a unit, c ∈ R×, and p, q are associates. For the induction step,
assume

a = p1p2 · · · pn = q1q2 · · · qm, m ≥ n

where the pi, qj are irreducibles. Since p1 | q1 · · · qm, and p1 is irreducible, hence prime, it
must divide some qj . After reordering, we may assume p1 | q1. But then q1 = p1u, and as
q1 is irreducible, u ∈ R×, showing that p1, q1 are associates. Since R is an integral domain,
we can cancel out p1 and remain with

p2 · · · pn = uq2 · · · qm = q′2q3 · · · qm, m ≥ n,

where q′2 is again irreducible. By the induction hypothesis, m = n, and after renumbering
each pair pi, qi is associate. �

Corollary 16 (The Fundamental Theorem of Arithmetic). The integers Z are a UFD.

Corollary 17. If F is a field, F [x] is a UFD.

All the containments below are proper.

Fields ⊂ Euclidean domains ⊂ PID ⊂ UFD ⊂ Integral domains

Examples are (in order) Z,Z[(1 +
√
−19)/2],Z[x],Z[

√
−5].

We end with a few corollaries for polynomials over a field.

Corollary 18. Let F be a field. Then the prime ideals in F [x] are the ideals P = (f(x)),
where f(x) is an irreducible polynomial. There is a bijection between primes ideals of F [x]
and monic irreducible polynomials.
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Corollary 19. The quotient F [x]/(f(x)) is a field ⇐⇒ f(x) is irreducible.

Corollary 20. Every nonzero polynomial f(x) ∈ F [x] can be written uniquely as f(x) =
ap1(x)n1 · · · pk(x)nk where the pi(x) are irreducible monic polynomials, and a ∈ F×.

4. summary

We have reviewed the definitions of Noetherian domains and Unique Factorization Do-
mains. We have proved that PIDs are Noetherian (satisfy the ACC). We have shown that
any PID is a UFD, and in particular that ideals in polynomial rings over fields correspond to
monic irreducible polynomials. In the next lesson we are going to explore the irreducibility
of polynomials.


