LESSON 4 - NOETHERIAN DOMAINS AND UNIQUE FACTORIZATION DOMAINS (X-HOUR)

ERAN ASSAF

1. INTRODUCTION

Last lesson we recalled properties of ideals and of integral domains, we've proved that the polynomial ring over a field is a Euclidean Domain, and that Euclidean Domains are Principal Ideal Domains. Today, we are going to recall the definition of a Noetherian Domain and a Unique Factorization Domain, show that a Principal Ideal Domain is a Unique Factorization Domain, and in particular classify ideals in polynomial rings over fields.

2. NOETHERIAN DOMAINS

Definition 1. A ring R is Noetherian if it satisfies the Ascending Chain Condition on ideals. i.e. if any increasing chain of ideals

$$I_1 \subseteq I_2 \subseteq \ldots \subseteq I_n \subseteq \ldots$$

becomes stationery (stabilizes), i.e. there exists some N such that for all n > N one has $I_n = I_N$.

Theorem 2. Let R be a ring. TFAE:

- (1) R is Noetherian.
- (2) If Σ is nonempty set of ideals of R, then it contains a maximal element.
- (3) Every ideal of R is finitely generated.

 $(1) \implies (2)$. : Choose some $I_1 \in \Sigma$. If I_1 is not maximal, there is some $I_2 \in \Sigma$ such that $I_1 \subsetneq I_2$. Proceeding in this way, we produce an infinite increasing chain, which does not stabilize, contradicting (1). Therefore, some I_n is maximal, proving (2).

 $[(2) \implies (3)]$: Let *I* be an ideal of *R*, and let Σ be the collection of all finitely generated ideals $J \subseteq I$. Since $0 \in \Sigma$, it is nonempty. Therefore, it contains a maximal element *J*. If $J \neq I$, let $x \in I \setminus J$. Since $J \in \Sigma$, *J* is finitely generated, hence so is the ideal J + xR, contradicting the maximality of *J*, hence J = I is finitely generated.

 $[(3) \implies (1)]$: Let $I_1 \subseteq I_2 \subseteq \ldots$ be an increasing chain of ideals. Then $I = \bigcup_{n=1}^{\infty} I_n$ is also an ideal. By assumption, it is finitely generated, say $I = (a_1, \ldots, a_n)$. For every i = $1, 2, \ldots, n$, since $a_i \in I$, there exists some m_i such that $a_i \in I_{m_i}$. Set $m = \max(m_1, \ldots, m_n)$. Then $a_1, \ldots, a_n \in I_m$, showing that $I \subseteq I_m$, hence $I_k = I$ for all $k \ge m$. \Box

ERAN ASSAF

Corollary 3. If R is a PID, then R is Noetherian (and every nonempty set of ideals contains a maximal element).

Proof. Every ideal is generated by a single element, hence finitely generated.

3. UNIQUE FACTORIZATION DOMAINS

Definition 4. Let R be an integral domain. An element $0 \neq r \in R$ which is not a unit is called **irreducible** if whenever r = ab with $a, b \in R$ then either $a \in R^{\times}$ or $b \in R^{\times}$. Otherwise, r is called **reducible**.

Definition 5. A nonzero element $p \in R$ is called a **prime** if the ideal (p) = pR is prime. In other words, p is prime if whenever $p \mid ab$ then either $p \mid a$ or $p \mid b$.

Definition 6. Two elements $a, b \in R$ are associate if there is $u \in R^{\times}$ such that a = ub.

Proposition 7. If R is an integral domain, and $p \in R$ is prime, then p is irreducible.

Proof. Assume p = ab for $a, b \in R$. Then, as p is prime, either $a \in (p)$ or $b \in (p)$. Assume w.l.o.g. that $a \in (p)$, then a = pu for some $u \in R$, hence 1 = ub, so $b \in R^{\times}$ is a unit. Therefore, p is irreducible.

Example 8. In \mathbb{Z} the irreducible elements are the prime numbers (and their negatives), and a, b are associates iff $a = \pm b$.

Proposition 9. If R is a PID, and $p \in R$ is irreducible, then p is prime.

Proof. Let p be an irreducible element in R. We will show that (p) is maximal, hence prime. Assume $(p) \subseteq I$ for some ideal I. Since R is a PID, I = (a) for some $a \in R$. But $p \in (p) \subseteq (a)$, hence there exists some $b \in R$ for which p = ab. Since p is irreducible, either $a \in R^{\times}$ or $b \in R^{\times}$. In the former case, $1 = a^{-1}a \in (a)$, hence I = (a) = R, while in the latter $a = abb^{-1} = pb^{-1} \in (p)$, hence (a) = (p). It follows that either I = R or I = (p), showing that I is maximal, hence prime.

Definition 10. A Unique Factorization Domain is an integral domain R in which every nonzero element $r \in R$ which is not a unit can be written as a finite product of irreducible elements $p_i \in R$ (not necessarily distinct) $r = p_1 p_2 \cdots p_n$, and this decomposition is unique up to associates. Namely if $r = q_1 q_2 \cdots q_m$ is another factorization into irreducibles, then m = n and (possibly after renumbering) p_i, q_i are associates.

Example 11. A field F is a UFD.

Proof. Every nonzero element is a unit, hence the condition is empty.

Example 12. The ring $\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} : a, b \in \mathbb{Z}\}$ is an integral domain which is not a UFD, as one can see from the factorization $(1 + \sqrt{-5})(1 - \sqrt{-5}) = 2 \cdot 3$. (Why are 2,3, $1 \pm \sqrt{5}$ irreducible? How do we know they are not associate?)

Proposition 13. If R is a UFD, $p \in R$ is prime $\iff p$ is irreducible.

Proof. Assume p is irreducible, and $p \mid ab$. Write $a = \prod p_i$ and $b = \prod q_j$ as products of irreducibles, then by uniqueness of decomposition we either have $pu = p_i$, whence $p \mid a$ or $pu = q_j$ whence $p \mid b$.

Theorem 14. If R is a Noetherian domain, every nonzero non-unit element can be written as a product of irreducibles.

Proof. Consider the set $A \subset R$ of nonzero non-units that do not admit a decomposition into irreducible elements, and let $\Sigma = \{(a) : a \in A\}$. If Σ is nonempty, then since it is a nonempty set of ideals and R is Noetherian, it contains a maximal element $(a) \in \Sigma$. Since a is not irreducible, by definition, we can write a = bc for some $b, c \in R$, both of them non-units. In particular, $(a) \subsetneq (b), (a) \subsetneq (c)$. By maximality, it follows that $b, c \notin A$, so we can write $b = p_1 p_2 \cdots p_m$ and $c = q_1 q_2 \cdots q_n$ for some irreducibles p_i, q_j . Therefore $a = p_1 p_2 \cdots p_m q_1 q_2 \cdots q_n$ is a product of irreducible elements, a contradiction. Thus Σ is empty.

Theorem 15. Every PID is a UFD. In particular, every Euclidean Domain is a UFD.

Proof. Let R be a PID. Since R is Noetherian, a decomposition to irreducibles exists. It remains to prove uniqueness of the decomposition $a = p_1 \dots p_n$. We proceed by induction on the number n of irreducible factors in some factorization. If n = 1, a = p is irreducible. Assume a = qc is some other factorization, starting with the irreducible q. Since p is irreducible, and q is not a unit, $c \in R^{\times}$, and p, q are associates. For the induction step, assume

$$a = p_1 p_2 \cdots p_n = q_1 q_2 \cdots q_m, \quad m \ge n$$

where the p_i, q_j are irreducibles. Since $p_1 | q_1 \cdots q_m$, and p_1 is irreducible, hence prime, it must divide some q_j . After reordering, we may assume $p_1 | q_1$. But then $q_1 = p_1 u$, and as q_1 is irreducible, $u \in \mathbb{R}^{\times}$, showing that p_1, q_1 are associates. Since \mathbb{R} is an integral domain, we can cancel out p_1 and remain with

$$p_2 \cdots p_n = uq_2 \cdots q_m = q'_2 q_3 \cdots q_m, \quad m \ge n,$$

where q'_2 is again irreducible. By the induction hypothesis, m = n, and after renumbering each pair p_i, q_i is associate.

Corollary 16 (The Fundamental Theorem of Arithmetic). The integers \mathbb{Z} are a UFD.

Corollary 17. If F is a field, F[x] is a UFD.

All the containments below are proper.

Fields \subset Euclidean domains \subset PID \subset UFD \subset Integral domains

Examples are (in order) $\mathbb{Z}, \mathbb{Z}[(1+\sqrt{-19})/2], \mathbb{Z}[x], \mathbb{Z}[\sqrt{-5}].$

We end with a few corollaries for polynomials over a field.

Corollary 18. Let F be a field. Then the prime ideals in F[x] are the ideals P = (f(x)), where f(x) is an irreducible polynomial. There is a bijection between primes ideals of F[x] and monic irreducible polynomials.

ERAN ASSAF

Corollary 19. The quotient F[x]/(f(x)) is a field $\iff f(x)$ is irreducible.

Corollary 20. Every nonzero polynomial $f(x) \in F[x]$ can be written uniquely as $f(x) = ap_1(x)^{n_1} \cdots p_k(x)^{n_k}$ where the $p_i(x)$ are irreducible monic polynomials, and $a \in F^{\times}$.

4. SUMMARY

We have reviewed the definitions of Noetherian domains and Unique Factorization Domains. We have proved that PIDs are Noetherian (satisfy the ACC). We have shown that any PID is a UFD, and in particular that ideals in polynomial rings over fields correspond to monic irreducible polynomials. In the next lesson we are going to explore the irreducibility of polynomials.