LESSON 4 - NOETHERIAN DOMAINS AND UNIQUE FACTORIZATION DOMAINS (X-HOUR)

ERAN ASSAF

1. Introduction

Last lesson we recalled properties of ideals and of integral domains, we've proved that the polynomial ring over a field is a Euclidean Domain, and that Euclidean Domains are Principal Ideal Domains. Today, we are going to recall the definition of a Noetherian Domain and a Unique Factorization Domain, show that a Principal Ideal Domain is a Unique Factorization Domain, and in particular classify ideals in polynomial rings over fields.

2. Noetherian Domains

Definition 1. A ring R is Noetherian if it satisfies the Ascending Chain Condition on ideals. i.e. if any increasing chain of ideals

$$
I_{1} \subseteq I_{2} \subseteq \ldots \subseteq I_{n} \subseteq \ldots
$$

becomes stationery (stabilizes), i.e. there exists some N such that for all $n>N$ one has $I_{n}=I_{N}$.

Theorem 2. Let R be a ring. TFAE:
(1) R is Noetherian.
(2) If Σ is nonempty set of ideals of R, then it contains a maximal element.
(3) Every ideal of R is finitely generated.
(1) \Longrightarrow (2). : Choose some $I_{1} \in \Sigma$. If I_{1} is not maximal, there is some $I_{2} \in \Sigma$ such that $I_{1} \subsetneq I_{2}$. Proceeding in this way, we produce an infinite increasing chain, which does not stabilize, contradicting (1). Therefore, some I_{n} is maximal, proving (2).
$[(2) \Longrightarrow(3)]$: Let I be an ideal of R, and let Σ be the collection of all finitely generated ideals $J \subseteq I$. Since $0 \in \Sigma$, it is nonempty. Therefore, it contains a maximal element J. If $J \neq I$, let $x \in I \backslash J$. Since $J \in \Sigma, J$ is finitely generated, hence so is the ideal $J+x R$, contradicting the maximality of J, hence $J=I$ is finitely generated.
$[(3) \Longrightarrow(1)]$: Let $I_{1} \subseteq I_{2} \subseteq \ldots$ be an increasing chain of ideals. Then $I=\bigcup_{n=1}^{\infty} I_{n}$ is also an ideal. By assumption, it is finitely generated, say $I=\left(a_{1}, \ldots, a_{n}\right)$. For every $i=$ $1,2, \ldots, n$, since $a_{i} \in I$, there exists some m_{i} such that $a_{i} \in I_{m_{i}}$. Set $m=\max \left(m_{1}, \ldots, m_{n}\right)$. Then $a_{1}, \ldots, a_{n} \in I_{m}$, showing that $I \subseteq I_{m}$, hence $I_{k}=I$ for all $k \geq m$.

Corollary 3. If R is a PID, then R is Noetherian (and every nonempty set of ideals contains a maximal element).

Proof. Every ideal is generated by a single element, hence finitely generated.

3. Unique Factorization Domains

Definition 4. Let R be an integral domain. An element $0 \neq r \in R$ which is not a unit is called irreducible if whenever $r=a b$ with $a, b \in R$ then either $a \in R^{\times}$or $b \in R^{\times}$. Otherwise, r is called reducible.

Definition 5. A nonzero element $p \in R$ is called a prime if the ideal $(p)=p R$ is prime. In other words, p is prime if whenever $p \mid a b$ then either $p \mid a$ or $p \mid b$.

Definition 6. Two elements $a, b \in R$ are associate if there is $u \in R^{\times}$such that $a=u b$.
Proposition 7. If R is an integral domain, and $p \in R$ is prime, then p is irreducible.
Proof. Assume $p=a b$ for $a, b \in R$. Then, as p is prime, either $a \in(p)$ or $b \in(p)$. Assume w.l.o.g. that $a \in(p)$, then $a=p u$ for some $u \in R$, hence $1=u b$, so $b \in R^{\times}$is a unit. Therefore, p is irreducible.

Example 8. In \mathbb{Z} the irreducible elements are the prime numbers (and their negatives), and a, b are associates iff $a= \pm b$.

Proposition 9. If R is a PID, and $p \in R$ is irreducible, then p is prime.
Proof. Let p be an irreducible element in R. We will show that (p) is maximal, hence prime. Assume $(p) \subseteq I$ for some ideal I. Since R is a PID, $I=(a)$ for some $a \in R$. But $p \in(p) \subseteq(a)$, hence there exists some $b \in R$ for which $p=a b$. Since p is irreducible, either $a \in R^{\times}$or $b \in R^{\times}$. In the former case, $1=a^{-1} a \in(a)$, hence $I=(a)=R$, while in the latter $a=a b b^{-1}=p b^{-1} \in(p)$, hence $(a)=(p)$. It follows that either $I=R$ or $I=(p)$, showing that I is maximal, hence prime.

Definition 10. A Unique Factorization Domain is an integral domain R in which every nonzero element $r \in R$ which is not a unit can be written as a finite product of irreducible elements $p_{i} \in R$ (not necessarily distinct) $r=p_{1} p_{2} \cdots p_{n}$, and this decomposition is unique up to associates. Namely if $r=q_{1} q_{2} \cdots q_{m}$ is another factorization into irreducibles, then $m=n$ and (possibly after renumbering) p_{i}, q_{i} are associates.

Example 11. A field F is a $U F D$.
Proof. Every nonzero element is a unit, hence the condition is empty.
Example 12. The ring $\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\}$ is an integral domain which is not a UFD, as one can see from the factorization $(1+\sqrt{-5})(1-\sqrt{-5})=2 \cdot 3$. (Why are $2,3,1 \pm \sqrt{5}$ irreducible? How do we know they are not associate?)

Proposition 13. If R is a $U F D, p \in R$ is prime $\Longleftrightarrow p$ is irreducible.

Proof. Assume p is irreducible, and $p \mid a b$. Write $a=\prod p_{i}$ and $b=\prod q_{j}$ as products of irreducibles, then by uniqueness of decomposition we either have $p u=p_{i}$, whence $p \mid a$ or $p u=q_{j}$ whence $p \mid b$.
Theorem 14. If R is a Noetherian domain, every nonzero non-unit element can be written as a product of irreducibles.
Proof. Consider the set $A \subset R$ of nonzero non-units that do not admit a decomposition into irreducible elements, and let $\Sigma=\{(a): a \in A\}$. If Σ is nonempty, then since it is a nonempty set of ideals and R is Noetherian, it contains a maximal element $(a) \in \Sigma$. Since a is not irreducible, by definition, we can write $a=b c$ for some $b, c \in R$, both of them non-units. In particular, $(a) \subsetneq(b),(a) \subsetneq(c)$. By maximality, it follows that $b, c \notin A$, so we can write $b=p_{1} p_{2} \cdots p_{m}$ and $c=q_{1} q_{2} \cdots q_{n}$ for some irreducibles p_{i}, q_{j}. Therefore $a=p_{1} p_{2} \cdots p_{m} q_{1} q_{2} \cdots q_{n}$ is a product of irreducible elements, a contradiction. Thus Σ is empty.
Theorem 15. Every PID is a UFD. In particular, every Euclidean Domain is a UFD.
Proof. Let R be a PID. Since R is Noetherian, a decomposition to irreducibles exists. It remains to prove uniqueness of the decomposition $a=p_{1} \ldots p_{n}$. We proceed by induction on the number n of irreducible factors in some factorization. If $n=1, a=p$ is irreducible. Assume $a=q c$ is some other factorization, starting with the irreducible q. Since p is irreducible, and q is not a unit, $c \in R^{\times}$, and p, q are associates. For the induction step, assume

$$
a=p_{1} p_{2} \cdots p_{n}=q_{1} q_{2} \cdots q_{m}, \quad m \geq n
$$

where the p_{i}, q_{j} are irreducibles. Since $p_{1} \mid q_{1} \cdots q_{m}$, and p_{1} is irreducible, hence prime, it must divide some q_{j}. After reordering, we may assume $p_{1} \mid q_{1}$. But then $q_{1}=p_{1} u$, and as q_{1} is irreducible, $u \in R^{\times}$, showing that p_{1}, q_{1} are associates. Since R is an integral domain, we can cancel out p_{1} and remain with

$$
p_{2} \cdots p_{n}=u q_{2} \cdots q_{m}=q_{2}^{\prime} q_{3} \cdots q_{m}, \quad m \geq n
$$

where q_{2}^{\prime} is again irreducible. By the induction hypothesis, $m=n$, and after renumbering each pair p_{i}, q_{i} is associate.

Corollary 16 (The Fundamental Theorem of Arithmetic). The integers \mathbb{Z} are a UFD.
Corollary 17. If F is a field, $F[x]$ is a UFD.
All the containments below are proper.

$$
\text { Fields } \subset \text { Euclidean domains } \subset \text { PID } \subset \text { UFD } \subset \text { Integral domains }
$$

Examples are (in order) $\mathbb{Z}, \mathbb{Z}[(1+\sqrt{-19}) / 2], \mathbb{Z}[x], \mathbb{Z}[\sqrt{-5}]$.
We end with a few corollaries for polynomials over a field.
Corollary 18. Let F be a field. Then the prime ideals in $F[x]$ are the ideals $P=(f(x))$, where $f(x)$ is an irreducible polynomial. There is a bijection between primes ideals of $F[x]$ and monic irreducible polynomials.

Corollary 19. The quotient $F[x] /(f(x))$ is a field $\Longleftrightarrow f(x)$ is irreducible.
Corollary 20. Every nonzero polynomial $f(x) \in F[x]$ can be written uniquely as $f(x)=$ $a p_{1}(x)^{n_{1}} \cdots p_{k}(x)^{n_{k}}$ where the $p_{i}(x)$ are irreducible monic polynomials, and $a \in F^{\times}$.

4. SUMMARY

We have reviewed the definitions of Noetherian domains and Unique Factorization Domains. We have proved that PIDs are Noetherian (satisfy the ACC). We have shown that any PID is a UFD, and in particular that ideals in polynomial rings over fields correspond to monic irreducible polynomials. In the next lesson we are going to explore the irreducibility of polynomials.

