LESSON 4 - NOETHERIAN DOMAINS AND UNIQUE
FACTORIZATION DOMAINS (X-HOUR)

ERAN ASSAF

1. INTRODUCTION

Last lesson we recalled properties of ideals and of integral domains, we’ve proved that
the polynomial ring over a field is a Euclidean Domain, and that Euclidean Domains are
Principal Ideal Domains. Today, we are going to recall the definition of a Noetherian
Domain and a Unique Factorization Domain, show that a Principal Ideal Domain is a
Unique Factorization Domain, and in particular classify ideals in polynomial rings over
fields.

2. NOETHERIAN DOMAINS

Definition 1. A ring R is Noetherian if it satisfies the Ascending Chain Condition
on ideals. i.e. if any increasing chain of ideals

LCI,C...CI,C...

becomes stationery (stabilizes), i.e. there exists some N such that for all n > N one has
I, =1Iy.

Theorem 2. Let R be a ring. TFAE:

(1) R is Noetherian.
(2) If ¥ is nonempty set of ideals of R, then it contains a mazimal element.
(3) Every ideal of R is finitely generated.

(1) = (2). : Choose some I; € ¥. If I is not maximal, there is some Iz € ¥ such that
I; C Is. Proceeding in this way, we produce an infinite increasing chain, which does not
stabilize, contradicting (1). Therefore, some I,, is maximal, proving (2).

[(2) = (3)]: Let I be an ideal of R, and let ¥ be the collection of all finitely generated
ideals J C I. Since 0 € X, it is nonempty. Therefore, it contains a maximal element J. If
J#I let x € T\ J. Since J € X, J is finitely generated, hence so is the ideal J + xR,
contradicting the maximality of J, hence J = I is finitely generated.

[(3) = (1)]: Let I C I C ... be an increasing chain of ideals. Then I = (J77, I,, is
also an ideal. By assumption, it is finitely generated, say I = (aq,...,a,). For every i =
1,2,...,n,since a; € I, there exists some m; such that a; € I,,,. Set m = max(myq,...,my,).
Then ay,...,a, € I,,, showing that I C I,,,, hence I, = I for all £ > m. ]
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Corollary 3. If R is a PID, then R is Noetherian (and every nonempty set of ideals
contains a mazximal element).

Proof. Every ideal is generated by a single element, hence finitely generated. ([l

3. UNIQUE FACTORIZATION DOMAINS

Definition 4. Let R be an integral domain. An element 0 # r € R which is not a unit
is called irreducible if whenever r = ab with a,b € R then either a € R* or b € R*.
Otherwise, r is called reducible.

Definition 5. A nonzero element p € R is called a prime if the ideal (p) = pR is prime.
In other words, p is prime if whenever p | ab then either p | a orp|b.

Definition 6. Two elements a,b € R are associate if there is u € R* such that a = ub.
Proposition 7. If R is an integral domain, and p € R is prime, then p is irreducible.

Proof. Assume p = ab for a,b € R. Then, as p is prime, either a € (p) or b € (p). Assume
w.l.o.g. that a € (p), then a = pu for some v € R, hence 1 = ub, so b € R* is a unit.
Therefore, p is irreducible. O

Example 8. In Z the irreducible elements are the prime numbers (and their negatives),
and a,b are associates iff a = +b.

Proposition 9. If R is a PID, and p € R is irreducible, then p is prime.

Proof. Let p be an irreducible element in R. We will show that (p) is maximal, hence
prime. Assume (p) C I for some ideal I. Since R is a PID, I = (a) for some a € R. But
p € (p) C (a), hence there exists some b € R for which p = ab. Since p is irreducible, either
a € R* or b € R*. In the former case, 1 = a~'a € (a), hence I = (a) = R, while in the
latter @ = abb~! = pb~! € (p), hence (a) = (p). It follows that either I = R or I = (p),
showing that I is maximal, hence prime. O

Definition 10. A Unique Factorization Domain is an integral domain R in which
every nonzero element r € R which is not a unit can be written as a finite product of irre-
ducible elements p; € R (not necessarily distinct) r = p1ps - - - pn, and this decomposition is
unique up to associates. Namely if r = q1qo - - - qm 1S another factorization into irreducibles,
then m = n and (possibly after renumbering) p;,q; are associates.

Example 11. A field F is a UFD.
Proof. Every nonzero element is a unit, hence the condition is empty. O

Example 12. The ring Z[v/—5] = {a + b\/=5 : a,b € Z} is an integral domain which is
not a UFD, as one can see from the factorization (14 +/—5)(1 —+/=5) =2-3. (Why are
2,3,1+ /5 irreducible? How do we know they are not associate ?)

Proposition 13. If R is a UFD, p € R is prime <= p is irreducible.



LESSON 4 - NOETHERIAN DOMAINS AND UNIQUE FACTORIZATION DOMAINS (X-HOUR) 3

Proof. Assume p is irreducible, and p | ab. Write a = [[p; and b = []¢; as products of
irreducibles, then by uniqueness of decomposition we either have pu = p;, whence p | a or
pu = ¢; whence p | b. O

Theorem 14. If R is a Noetherian domain, every nonzero non-unit element can be written
as a product of irreducibles.

Proof. Consider the set A C R of nonzero non-units that do not admit a decomposition
into irreducible elements, and let ¥ = {(a) : a € A}. If ¥ is nonempty, then since it is
a nonempty set of ideals and R is Noetherian, it contains a maximal element (a) € X.
Since a is not irreducible, by definition, we can write a = bc for some b,¢c € R, both of
them non-units. In particular, (a) € (b), (a) € (¢). By maximality, it follows that b,c ¢ A,
so we can write b = pip2---pp, and ¢ = q1q2 - - - g, for some irreducibles p;, g;. Therefore
a = piP2 - Pmqiq2 - - - Gn is a product of irreducible elements, a contradiction. Thus X is

empty. O
Theorem 15. Every PID is a UFD. In particular, every Fuclidean Domain is a UFD.

Proof. Let R be a PID. Since R is Noetherian, a decomposition to irreducibles exists. It
remains to prove uniqueness of the decomposition a = p;...p,. We proceed by induction
on the number n of irreducible factors in some factorization. If n = 1, a = p is irreducible.
Assume a = gc is some other factorization, starting with the irreducible ¢. Since p is
irreducible, and ¢ is not a unit, ¢ € R*, and p, g are associates. For the induction step,
assume
a=piP2---Pn =4q142" " qm, M2=2"N

where the p;, ¢; are irreducibles. Since pi | g1 - - gm, and p; is irreducible, hence prime, it
must divide some ¢;. After reordering, we may assume p; | ¢;. But then ¢; = piu, and as
q1 is irreducible, u € R*, showing that pi, ¢ are associates. Since R is an integral domain,
we can cancel out p; and remain with

P2 Pn =UQ2 G = G5G3 Gms M >N,

where ¢}, is again irreducible. By the induction hypothesis, m = n, and after renumbering
each pair p;, g; is associate. ]

Corollary 16 (The Fundamental Theorem of Arithmetic). The integers Z are a UFD.
Corollary 17. If F' is a field, F[z] is a UFD.
All the containments below are proper.
Fields C Euclidean domains C PID C UFD C Integral domains

Examples are (in order) Z,Z[(1 + v—19)/2|, Z|x], Z[/—5].
We end with a few corollaries for polynomials over a field.

Corollary 18. Let F be a field. Then the prime ideals in F|x]| are the ideals P = (f(x)),
where f(z) is an irreducible polynomial. There is a bijection between primes ideals of F[x]
and monic irreducible polynomials.
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Corollary 19. The quotient F[z]/(f(z)) is a field <= f(x) is irreducible.

Corollary 20. Every nonzero polynomial f(x) € Fx] can be written uniquely as f(z) =
api(x)™ - - - pi(x)™ where the p;(x) are irreducible monic polynomials, and a € F*.

4. SUMMARY

We have reviewed the definitions of Noetherian domains and Unique Factorization Do-
mains. We have proved that PIDs are Noetherian (satisfy the ACC). We have shown that
any PID is a UFD, and in particular that ideals in polynomial rings over fields correspond to
monic irreducible polynomials. In the next lesson we are going to explore the irreducibility
of polynomials.



