
LESSON 3 - REVIEW OF RING THEORY II

ERAN ASSAF

1. Introduction

Last lesson we reviewed the definitions of rings, homomorphisms and ideals, with a view
towards polynomial rings, and defined integral domains and fields. Today, we are going to
remind ourselves some properties of ideals and of integral domains.

2. properties of ideals

Definition 1. Let I be an ideal of R. If there is a ∈ R such that I = aR, we say that I is
a principal ideal.

Example 2. Every ideal in Z is principal. The ideal (2, x) in Z[x] is not principal.

Definition 3. An ideal M in a ring R is a maximal ideal if M 6= R and there isn’t any
ideal M ( I ( R.

(Alternative description - if M ⊆ I then either I = M or I = R)

Example 4. The ideals pZ in Z are maximal when p is prime.

Proposition 5. Every proper ideal is contained in a maximal ideal.

Proof. Let I be a proper ideal in R. Let S be the set of all proper ideals of R which contain
I. Then I ∈ S, hence S is nonempty, and is partially ordered by inclusion. If C is a chain
in S, define JC =

⋃
J∈C J . Since 0 ∈ J for all J ∈ C, we have 0 ∈ JC . If a, b ∈ JC , there are

Ja, Jb ∈ C such that a ∈ Ja, b ∈ Jb. Since either Ja ⊆ Jb or Jb ⊆ Ja, we have a − b ∈ JC ,
showing it is a subgroup. Finally, if a ∈ R and x ∈ JC , then x ∈ J for some J ∈ C so
ax ∈ J ⊆ JC , showing that JC is an ideal. If JC is not proper, then 1 ∈ JC , hence 1 ∈ J
for some J ∈ C, contradiction. This proves that every chain has an upper bound in S. By
Zorn’s lemma S has a maximal element which is a maximal ideal containing I. �

Proposition 6. If R is commutative, an ideal M is maximal ⇐⇒ the quotient ring R/M
is a field.

Proof. If M is maximal, and a ∈ R \M , then M +aR = R, so there exists b ∈ R such that
1− ab ∈M , so that (a+M)(b+M) = 1 +M , showing that R/M is a field. Conversely, if
R/M is a field, and M ( I, there exists a ∈ I \M and some b ∈ R such that 1− ab ∈M ,
hence 1 ∈ aR+M ⊆ I, showing that I = R. �

Corollary 7. The quotient ring Z/pZ is a field ⇐⇒ p is prime. We denote Fp = Z/pZ.
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Example 8. The ideal (x) ⊆ Z[x] is not maximal, as (x) ⊆ (2, x) ⊆ Z[x]. The ideal (2, x)
is maximal, as Z[x]/(2, x) ' Z/2Z is a field.

Definition 9. An ideal P in a ring R is a prime ideal if for any a, b ∈ R such that
ab ∈ P , either a ∈ P or b ∈ P .

Example 10. The ideal (x) ⊂ Z[x] is a prime ideal.

Proposition 11. If R is commutative, an ideal P is prime ⇐⇒ the quotient ring R/P
is an integral domain.

Proof. P is prime iff ab ∈ P =⇒ a ∈ P or b ∈ P , which is equivalent to

(a+ P )(b+ P ) = 0 + P =⇒ a+ P = 0 + P or b+ P = 0 + P,

which is the condition for R/P to be an integral domain. �

Corollary 12. A maximal ideal is prime.

Proof. Fields are integral domains. �

Corollary 13. Let R be an integral domain, then either R has a subring isomorphic to Z,
in which case we say that R has characteristic 0, or it has a subring isomorphic to Fp
for some prime p, in which case we say that R has characteristic p.

Proof. Consider the map iR : Z→ R. Then Z/ ker iR ' iR(Z) is a subring of R, hence an
integral domain, so ker iR is a prime ideal. Therefore, either ker iR = 0 or there is a prime
p such that ker iR = pZ. In the former case, iR is injective, and embeds Z ' iR(Z) ⊆ R in
R. In the latter, iR induces an isomorphism

Fp = Z/pZ ' iR(Z) ⊆ R. �

Corollary 14. Let I be an ideal of R, and let I[x] be the ideal of R[x] generated by I.
Then

R[x]/I[x] ' (R/I)[x].

In particular, if I is a prime ideal of R, then I[x] is a prime ideal of R[x].

Proof. The natural projection π : R → R/I can be extended to a homomorphism π̃ :
R[x]→ (R/I)[x], with kernel ker π̃ = I[x]. The first isomorphism theorem proves the first
statement. For the second, if I is a prime ideal, R/I is an integral domain, hence so is
(R/I)[x] ' R[x]/I[x], so I[x] is a prime ideal of R[x]. �

Example 15. Let R = Z and consider the ideal nZ of Z, then we obtain

Z[x]/nZ[x] ' Z/nZ[x],

and the natural projection map by reducing the coefficients modulo n is a ring homomor-
phism. If n is composite, the quotient ring is not an integral domain. If n is prime, then
Z/pZ is a field, and so Z/pZ is an integral domain.
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3. Euclidean Domains and PIDs

Definition 16. Let R be an integral domain. A function N : R \ {0} → Z≥0 is called a
norm on R. If N(a) > 0 for all a, N is a positive norm.

Definition 17. An integral domain R is a Euclidean Domain if there is a norm N on
R such that for any a, b ∈ R such that b 6= 0, there exist q, r ∈ R such that

a = qb+ r, r = 0 or N(r) < N(b).

Example 18. The integers Z are a Euclidean Domain, with N(a) = |a|.

Proof. Division algorithm in Z. �

Theorem 19. If F is a field, then F [x] is a Euclidean Domain with N(p(x)) = deg p(x).
More precisely, if a(x), b(x) ∈ F [x], with b(x) 6= 0 there are unique q(x), r(x) ∈ F [x] such
that

a(x) = q(x)b(x) + r(x), r(x) = 0 or deg r(x) < deg b(x).

Proof. We start with proving existence. If a(x) = 0, set q(x) = r(x) = 0. Assume
a(x) 6= 0, and prove by induction on n = deg a(x). Let m = deg b(x). If n < m, take
q(x) = 0 and r(x) = a(x). Otherwise n ≥ m. Note that if n = 0, then also m = 0, and
a = a(x), b = b(x) ∈ F× so we may take q(x) = ab−1, r(x) = 0. Write

a(x) = anx
n + . . .+ a1x+ a0, b(x) = bmx

m + . . .+ b1x+ b0,

and consider the polynomial (note bm 6= 0 is invertible, since F is a field)

c(x) = a(x)− b−1m anx
n−mb(x).

Then deg c(x) < n. By induction, there are p(x), r(x) with

c(x) = p(x)b(x) + r(x), r(x) = 0 or deg r(x) < deg b(x).

Then we can write q(x) = p(x) + b−1m anx
n−m and get

a(x) = q(x)b(x) + r(x), r(x) = 0 or deg r(x) < deg b(x).

For uniqueness, suppose q1(x), r1(x) also satisfy the conditions. Then

r(x)− r1(x) = (a(x)− q(x)b(x))− (a(x)− q1(x)b(x)) = b(x)(q(x)− q1(x)).

If q(x)− q1(x) 6= 0, then it follows that

deg(r(x)− r1(x)) = deg b(x) + deg(q(x)− q1(x)) ≥ deg b(x),

contradiction. Therefore q(x) = q1(x) and r(x) = r1(x). �

Definition 20. A Principal Ideal Domain is an integral domain in which every ideal
is principal.

Example 21. The integers Z form a PID.

Example 22. The polynomial ring over the integers Z[x] is not a PID.

Proposition 23. Every Euclidean Domain R is a PID.
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Proof. Let 0 6= I ⊆ R, and let 0 6= b ∈ I have minimal norm. If a ∈ I, then a = qb+ r for
some q, r ∈ R with N(r) < N(b) or r = 0. By minimality of b, we must have r = 0 hence
a ∈ (b). It follows that I = (b) is principal. �

Proposition 24. Every nonzero prime ideal P in a PID R is maximal.

Proof. Write P = (p) ⊆ (a). Then p = ab for some b ∈ R. Since P is prime, either a ∈ P or
b ∈ P . If a ∈ P , then (a) = P . If b ∈ P , then b = pu for some u ∈ R, hence 1 = au ∈ (a).
Therefore (a) = R. Thus, P is maximal. �

4. summary

Today we recalled some properties of ideals and properties of some integral domains, and
that quotient rings are fields for maximal ideals and integral domains for prime ideals. We
have seen that any integral domain, and in particular any field, has a characteristic, which
is either 0 or a prime p. We proved that the polynomials over a field form a Euclidean
domain, hence a PID.

5. Appendix: on Zorn’s Lemma

During the lesson it became clear that not everyone is familiar with Zorn’s Lemma. As
this is an important tool in mathematics, I provide a brief review of it here. The interested
reader can of course read about it in the literature.

The idea behind Zorn’s lemma is to allow one use the axiom of choice to prove existence
of maximal objects in uncountable situations. This allows one to apply al the machinery
of transfinite induction only implicitly.

Since Zorn’s lemma is a very general statement, we will take a step back and consider
general partially ordered sets. Before stating the lemma, let us define a few concepts related
to them. We begin by defining a partially ordered set.

Definition 25. Let S be a set. Let 2S = {T : T ⊆ S} be the set of subsets of S. It is
called the power set of S.

Definition 26. Let S be a set. A relation R on S is a subset R ⊆ S × S. For elements
x, y ∈ S, we denote by xRy the statement (x, y) ∈ R.

A relation is sometimes called a binary relation, or a homogeneous relation.

Example 27. The relation ≤ on Z is given by ” ≤ ” = {(a, b) ∈ Z× Z | a ≤ b}. Similarly
≥, <,>,=, 6=, | are relations on Z.

Definition 28. Let P be a set and ≤ a relation on P . Then ≤ is a partial order on P
if it satisfies the following three properties.

(1) Reflexivity : x ≤ x for all x ∈ P .
(2) Antisymmetry : If x ≤ y and y ≤ x, then x = y for all x, y ∈ P .
(3) transitivity : If x ≤ y and y ≤ z, then x ≤ z for all x, y, z ∈ P .

The pair (P,≤) is called a partially ordered set.
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Example 29. The relation ≤ on Z is a partial order.

Example 30. Let S be a set. The relation ⊆ on its power set 2S is a partial order.

In some circumstances, we can’t compare all elements in our poset, but when we can
it is usually much easier to work with. Therefore sets in which we can compare any two
objects deserve special attention.

Definition 31. A partially ordered set (P,≤) is a totally ordered set if for any x, y ∈ P
either x ≤ y or y ≤ x. If (P,≤) is a partially ordered set and C ⊆ P is such that (C,≤) is
totally ordered, we say that C is a chain in P .

Example 32. The set Z≥1 is partially ordered together with the division relation a | b, but
it is not totally ordered. A chain in (Z≥1, |) is a sequence of integers {an}∞n=1 such that
an | an+1 for all n.

Example 33. (R,≤) is a totally ordered set. In particular R is an uncountable chain in
R, showing that chains need not be countable.

Finally, we want to introduce notion of bounds and maximality, to actually be able to
find a maximal element.

Definition 34. Let (P,≤) be a partially ordered set, and let S ⊆ P be a subset. An element
x inP such that s ≤ x for all s ∈ S is an upper bound for S in P .

Example 35. In (Z≥1, |), if S = {a1, . . . , an} ⊆ Z≥1 is finite, then the element lcm(S) =
lcm(a1, . . . , an) is an upper bound for S in Z≥1.

Definition 36. Let (P,≤) be a partially ordered set. A maximal element x ∈ P is an
element such that for all y ∈ P , x ≤ y =⇒ x = y.

Example 37. The set S = {x ∈ Q | x ≤
√

2} ⊆ Q is a chain in (Q,≤) that has no
maximal element. Any rational number larger than

√
2 will be an upper bound for S in Q.

We now have all the definitions in place to formulate Zorn’s Lemma.

Lemma 38 (Zorn’s Lemma). Let (P,≤) be a partially ordered set. Assume that every
chain in P has an upper bound in P . Then P contains a maximal element.

It is sometimes simpler and more common to use the following equivalent formulation.

Lemma 39 (Zorn’s Lemma). Let (P,≤) be a nonempty partially ordered set. Assume that
every nonempty chain in P has an upper bound in P . Then P contains a maximal element.

Proof Sketch. Suppose on the contrary that the lemma is false. Then there exists a poset
P such that every chain C ⊆ P has an upper bound, and P does not contain any maximal
element. For any C ⊆ P , let u(C) ∈ P be its upper bound. Since u(C) is not maximal,
there exists an element b(C) ∈ P such that u(C) < b(C). Note that by the axiom of choice,
we can define such a function b.

We use the function b to obtain a contradiction. Since P is nonempty, it contains an
element a0 ∈ P . Assume by (transfinite) induction that we have constructed all elements
aα with α < ω. Then we define aω = b({aα : α < ω}). In particular, if we choose a cardinal
ω > |P |, we construct a subset of |P | of size ω, a contradiction. �


