
LESSON 2 - REVIEW OF RING THEORY I

ERAN ASSAF

1. introduction

Recall that our goal is to understand whether it is possible to find a general solution
to an equation of the form anx

n + . . . + a1x + a0 = 0 (in one variable). As long as the
idea was ”find a solution”, we didn’t have to think about it much. However, once we
began suspecting that there is no such formula, we need to be more careful. We need to
figure out what do we mean by ”general solution”. Looking at the formulas for solving the
quadratic, cubic and quartic equations, it seems reasonable to ask for a solution which is
obtained by extracting roots and the four arithmetic operations. Abel’s idea was to work
in a framework where the solutions exist, and then ask whether they are of the form we
want. We need to construct a framework through which we can realize which numbers can
be obtained in this way. The four arithmetic operations give rise to the notion of a field,
and to accommodate for extraction of roots, we will use ”field extensions”. However, fields
are a special case of a more general structure - rings, which will be useful also for dealing
with the equations themselves (polynomials). We will therefore begin with a brief review
of ring theory, keeping in mind that the main applications will be polynomials and fields.

2. basic definitions and examples

Definition 1. A ring is a set R with two binary operations +, · (called addition and
multiplication) such that

• (R,+) is an abelian group.
• · : R×R→ R is associative.
• · distributes over +.

The ring R is commutative if · is.
The ring R has an identity if there is an element 1 ∈ R which is neutral w.r.t. ·.

Emphasize - In this class, rings will always be commutative and will always have 1.

Example 2. The ring of integers Z, with the usual addition and multiplication.

Definition 3. If R is a ring (commutative with identity), we consider formal sums

p(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0

with n ≥ 0 and a0, . . . an ∈ R. p(x) is called a polynomial in x, with coefficients
a0, . . . , an. If an 6= 0, we say that f(x) has degree n, anx

n is called the leading term
and an is the leading coefficient. If an = 1, we say the f(x) is monic. We call the set
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of all such polynomials the ring of polynomials in the variable x with coefficients
in R, and denote it by R[x],

We define addition and multiplication of polynomials as follows.
n∑
i=0

aix
i +

n∑
i=0

bix
i =

n∑
i=0

(ai + bi)x
i

and (
m∑
i=0

aix
i

)
·

 n∑
j=0

bjx
j

 =
m+n∑
k=0

 ∑
i+j=k

aibj

xk.

Proposition 4. R[x] with the above binary operations forms a ring.

Proof. Exercise. �

Definition 5. A subring of R is a subgroup of R that is closed under multiplication.

Example 6. Z is a subring of Q, which is a subring of R.

Example 7. The set of constant polynomials in R[x] forms a subring.

3. ring homomorphisms, ideals and quotient rings

Definition 8. Let R and S be rings. A ring homomorphism is a map ϕ : R → S that
preserves the binary operations.

ϕ(a+ b) = ϕ(a) + ϕ(b), ϕ(ab) = ϕ(a)ϕ(b) ∀a, b ∈ R.
The kernel of ϕ is the set kerϕ = ϕ−1(0).

A bijective ring homomorphism is called an isomorphism. If ϕ : R→ S is an isomor-
phism, we write R ' S, and say that they are isomorphic.

Example 9. The map iR : Z→ R defined by

iR(n) = 1 + 1 + . . .+ 1︸ ︷︷ ︸
n

, iR(−n) = −iR(n) ∀n > 0

is a homomorphism.

Example 10. The natural map ϕ : R → R[x] is a ring homomorphism. Since kerϕ = 0,
it is injective, and identifies R as a subring of R[x]. From now on, we will identify them
and write R ⊆ R[x].

Example 11. Let R be a ring, a ∈ R an element, and consider the map eva : R[x] → R
defined by eva(p(x)) = p(a), i.e. evaluating the polynomial at a. Then eva is a ring
homomorphism (check!), and ker eva is the set of polynomials which have a as a root. If
a = 0, p(0) is the constant term, and ker ev0 = xR[x].

Example 12. Let ϕ : R → S be a ring homomorphism. We can extend it to a ring
homomorphism ϕ̃ : R[x]→ S[x] defined by

ϕ̃ (anx
n + . . . a1x+ a0) = ϕ(an)xn + . . .+ ϕ(a1)x+ ϕ(a0).
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Definition 13. A subgroup I ⊆ R is called an ideal if it is closed under multiplication by
elements of R, explicitly if for all a ∈ R, aI ⊆ I.

Example 14. In any ring R, the subgroups {0} and R are ideals. We say that an ideal I
is proper if I 6= R. The ideal {0} is called the trivial ideal and is denoted by 0.

Example 15. For any n ∈ Z, the subgroup nZ is an ideal in Z, and these are all of them.

Proposition 16. Let ϕ : R → S be a homomorphism. Then kerϕ is an ideal in R and
Imϕ is a subring of S.

Proof. Since ϕ is a group homomorphism, kerϕ is a subgroup of R, and Imϕ is a subgroup
of S. If a ∈ R, x ∈ kerϕ, then ϕ(x) = 0, so that ϕ(ax) = ϕ(a)ϕ(x) = 0, hence ax ∈ kerϕ,
showing it is an ideal. If ϕ(a), ϕ(b) ∈ Imϕ, then so does ϕ(ab) = ϕ(a)ϕ(b), showing that
Imϕ is a subring. �

Example 17. Consider the map iR. Its kernel is an ideal in Z, so it has to be nZ.

Proposition 18. If I, J are ideals in R, so are I ∩ J and I + J . If {Iα}α∈A are ideals,
then so is I =

⋂
α∈A Iα.

Proof. Start with the last statement. I is a subgroup of R, and if a ∈ R, x ∈ I, then for
all α, x ∈ Iα hence ax ∈ Iα ⊆ I. Thus, ax ∈ I and aI ⊆ I. Then I ∩ J is a special case,
I + J is a subgroup and a(I + J) = aI + aJ ⊆ I + J . �

Definition 19. Let S ⊆ R be a subset. Then the ideal generated by S, I = 〈S〉, is the
minimal ideal containing S. If S = {a1, . . . , an} is finite, we write I = (a1, . . . , an). We
write IJ for the ideal generated by the products

IJ = 〈{ab : a ∈ I, b ∈ J}〉 =
{∑

aibi : ai ∈ I, bi ∈ J
}
.

Proposition 20. Let I be an ideal of R, then the quotient group R/I forms a ring with
the binary operations

(a+ I) + (b+ I) = (a+ b) + I, (a+ I) · (b+ I) = ab+ I ∀a, b ∈ R.
It is called the quotient ring.

Proof. Since I is a (normal) subgroup of the abelian group (R,+), (R/I,+) is an abelian
group. The multiplication is well defined, since if a1, a2, b1, b2 ∈ R are such that a1 + I =
a2 + I and b1 + I = b2 + I, then a1 − a2, b1 − b2 ∈ I, and as I is an ideal in R, also (using
distributivity in R)

a1b1 − a2b2 = (a1 − a2)b1 + a2(b1 − b2) ∈ I =⇒ a1b1 + I = a2b2 + I.

Since · : R×R→ R is associative, we have

[(a+ I)(b+ i)](c+ I) = (ab)c+ I = a(bc) + I = (a+ I)[(b+ I)(c+ I)],

for any a, b, c ∈ R, establishing associativity in R/I. The distributivity law in R also yields

(a+I)[(b+i)+(c+I)] = a(b+c)+I = (ab+ac)+I = (ab+I)+(ac+I) = (a+I)(b+I)+(a+I)(c+I),
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for any a, b, c ∈ R, showing that R/I is a ring.
As R is commutative, we also have (a+ I)(b+ I) = ab+ I = ba+ I = (b+ I)(a+ I) for

any a, b ∈ R so that R/I is commutative, and finally note that (a+ I)(1 + I) = a+ I for
all a ∈ R, so that 1 + I is an identity in R/I. �

Theorem 21 (The First Isomorphism Theorem for Rings). If ϕ : R→ S is a ring homo-
morphism, then R/ kerϕ ' ϕ(R).

For any ideal I in R, the natural map R→ R/I is surjective with kernel I.

Proof. Since ϕ is a homomorphism of abelian groups, kerϕ is a (normal) subgroup of the
abelian group (R,+), and by the first isomorphism theorem for groups, we know that
R/ kerϕ ' ϕ(R) as abelian groups, via the isomorphism ϕ(a + kerϕ) = ϕ(a). Because ϕ
is a ring homomorphism, for any a, b ∈ R we have

ϕ((a+ kerϕ)(b+ kerϕ)) = ϕ(ab+ kerϕ) = ϕ(ab) = ϕ(a)ϕ(b) = ϕ(a+ kerϕ)ϕ(b+ kerϕ),

so that ϕ is also a ring homomorphism, hence an isomorphism of rings. For the second
statement, note that a 7→ a + I for all a ∈ R, showing surjectivity, and that a + I = I iff
a ∈ I. �

Example 22. The natural map Z→ Z/nZ is called reduction mod n.

Example 23. Consider the map ev0 : R[x]→ R. Then ev0(R[x]) = R, and ker ev0 = (x).
Therefore, R[x]/(x) ' R.

4. fields and integral domains

Definition 24. A ring F (commutative, with 1) is called a field if (F\{0}, ·) is a group.

Example 25. The rationals Q, as well as the real and complex numbers, R and C.

Proposition 26. Let D ∈ Q be a non-square, and define

Q(
√
D) = {a+ b

√
D | a, b ∈ Q} ⊂ C.

Then Q(
√
D) is a field (called a quadratic field).

Proof. Exercise. �

Definition 27. An element 0 6= a ∈ R is called a zero divisor if there exists 0 6= b ∈ R
such that ab = 0. An element u ∈ R is called a unit is there exists v ∈ R such that uv = 1.
We denote v = u−1.

Proposition 28. The set of units in R form a group.

Proof. (uv)v−1u−1 = 1. �

Definition 29. The set of units in R is called the unit group of R and is denoted by R×.

Example 30. Z× = {±1}.

Example 31. A ring F is a field iff F× = F\{0}, i.e. every nonzero element is a unit.
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Corollary 32. A ring F is a field ⇐⇒ its only ideals are 0 and F .

Proof. If F is a field and I 6= 0, let 0 6= a ∈ I. Then 1 = a−1a ∈ I, so I = F . Conversely,
let 0 6= a ∈ F , then the ideal (a) 6= 0 must be F , so 1 ∈ F = (a), hence there exists
a−1 ∈ F such that 1 = aa−1, so that F is a field. �

Corollary 33. If ϕ : F → R is a homomorphism from a field, then it is either zero or
injective.

Proof. kerϕ is an ideal in F , hence either F or 0. �

Definition 34. A ring R is called an integral domain if it has no zero divisors.

Example 35. Z is an integral domain.

Example 36. Z/nZ is an integral domain ⇐⇒ n is prime.

Example 37. A subring of an integral domain is an integral domain.

Proposition 38. Any field F is an integral domain.

Proof. If 0 6= a ∈ F , and b ∈ F is such that ab = 0, then b = a−1(ab) = 0. �

Proposition 39. For an integral domain R, the following statements hold.

(1) deg p(x)q(x) = deg p(x) + deg q(x) for any nonzero p(x), q(x) ∈ R[x].
(2) R[x] is an integral domain.
(3) R[x]× = R×.

Proof. Let amx
m and bnx

n be the leading terms of p(x), q(x) respectively. Then p(x)q(x) =
ambnx

m+n +
∑

j<m+n cjx
j . Since R is an integral domain and am, bn ∈ R are nonzero,

ambn 6= 0 so the leading term of p(x)q(x) is ambnx
m+n, showing (1) and (2). Finally, if

p(x) ∈ R[x]×, then there is q(x) ∈ R[x] such that p(x)q(x) = 1, hence (as both are nonzero)

0 = deg 1 = deg p(x)q(x) = deg p(x) + deg q(x),

so deg p(x) = deg q(x) = 0, showing that p(x), q(x) ∈ R, hence in R×, proving (3). �

5. summary

We have reviewed the notions of a ring, a ring homomorphism and ideals. We have seen
that ring homomorphisms can be extended to the polynomial rings, and that every ring
R carries a (unique) homomorphism iR : Z → R. We defined fields and integral domains,
saw that a homomorphism from a field is injective, and that the polynomial ring over an
integral domain form themselves an integral domain.


