
Math 25 – Group Programming Assignment 3i

Due Tuesday, November 15th, beginning of class.

1. Find an odd prime p such that every element of {−100, . . . , 100} is a square modulo p.

Remark: You’ll probably want to use an is prime function from a library.

Solution: Let S denote the set of odd primes in the interval [3, 100]. We first construct a
prime p which satisfies the congruences

p ≡ 1 (mod 8), p ≡ 1 (mod q) for all q ∈ S.

In other words, denote N := 8
∏
q∈S

q. We are looking for a prime of the form

p = kN + 1

for some k. Using Sage’s is prime function and a bit of trial and error
S = [x for x in range(3, 100) if is_prime(x)]]
N = 8 * prod(S)
assert is_prime(5*N + 1)

we may choose k = 5 and let p = 5N + 1.

We now prove that the numbers −100, . . . , 100 are all quadratic residues modulo p. It is easy
enough to verify this by computer and Euler’s criterion.

p = 5*N + 1
s = (p-1) // 2
assert {pow(x, s, p) for x in range(-100, 101) if x != 0} == {1}
# By Euler’s criterion, every element of the set above is a quadratic residue.
# Trivially 0 is always a square.

However, this does not illuminate exactly why we’ve constructed p as we did. The following
is a better explaination.

We have insisted that p ≡ 1 (mod 8), so by the first and second supplements to quadratic
reciprocity (

−1

p

)
=

(
2

p

)
= 1.

Additionally, by quadratic reciprocity we have for the primes q ∈ S that(
q

p

)
=

(
p

q

)
=

(
1

q

)
= 1

since p ≡ 1 (mod q). Finally, let a ∈ {−100, . . . , 100} be nonzero and let

a = (−1)x2y
∏
q∈S

qeq

be its prime factorization (where eq is allowed to be 0). Then by multiplicativity of the
Legendre symbol(

a

p

)
=

(
(−1)x2y

∏
q∈S qeq

p

)
=

(
(−1)x

p

)
·
(

2

p

)y

·
∏
q∈S

(
q

p

)eq

= 1.

Thus every −100 ≤ a ≤ 100 is a square mod p (including, trivially, 0).
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2. We now finally solve the problem from the syllabus page. First, one notices by inspection
that

(−80538738812075974)3 + 804357581458175153 + 126021232973356313 = 42.

(Credit of course to Booker and Sutherland. This took...a while to find.)

It is much easier to prove that 40, 41 are not the sum of three cubes. Prove this. (Hint: look
mod 9.)

Solution: First we prove that if n is a sum of three integer cubes, then

n ≡ 0, 1, 2, 3, 6, 7, 8 (mod 9).

This is just a matter of enumerating the cases.
import itertools
sums = {(x^3 + y^3 + z^3) % 9 for x,y,z in itertools.product(range(9), repeat=3)}}
assert sums == {0, 1, 2, 3, 6, 7, 8}

We see that 40 ≡ 4 (mod 9) and 41 ≡ 5 (mod 9), so cannot be the sum of three cubes.

3. (Advanced topics) Prove that for any k ∈ N, there exists an odd prime p such that each
x ∈ {−k, . . . , k} is a quadratic residue modulo p. One might find Dirichlet’s theorem on
primes in arithemtic progressions helpful.

4. (Advanced topics, Advertisement)

Recall from the solutions of assignment 3 the following remark:

Remark. It is presently unknown whether a 3×3 magic square of squares with integer entries
exists. It is also “unknown” whether a 3 × 3 magic square of squares with entries in Z/nZ
exists for all sufficiently large n. See https: // www. youtube. com/ watch? v= FCczHiXPVcA .

Now, Voight and I were thinking that settling the Z/nZ version of the question might be a
nice prelude to an undergraduate research problem. If you find yourself drawn to the question,
you could give the following an attempt:

Find a magic square of squares modulo 71. (Allegedly this exists.)

Comments about grading

See computing assignment 1.

2


