Math 25 - Group Programming Assignment $3 i$

Due Tuesday, November 15th, beginning of class.

1. Find an odd prime p such that every element of $\{-100, \ldots, 100\}$ is a square modulo p.

Remark: You'll probably want to use an is_prime function from a library.
Solution: Let S denote the set of odd primes in the interval [3,100]. We first construct a prime p which satisfies the congruences

$$
p \equiv 1 \quad(\bmod 8), \quad p \equiv 1 \quad(\bmod q) \quad \text { for all } q \in S
$$

In other words, denote $N:=8 \prod_{q \in S} q$. We are looking for a prime of the form

$$
p=k N+1
$$

for some k. Using Sage's is_prime function and a bit of trial and error

```
\(S=[x\) for \(x\) in range \((3,100)\) if is_prime ( \(x\) )] ]
\(\mathrm{N}=8 * \operatorname{prod}(\mathrm{~S})\)
assert is_prime ( \(5 * \mathrm{~N}+1\) )
```

we may choose $k=5$ and let $p=5 N+1$.
We now prove that the numbers $-100, \ldots, 100$ are all quadratic residues modulo p. It is easy enough to verify this by computer and Euler's criterion.

```
p = 5*N + 1
s = (p-1) // 2
assert {pow(x, s, p) for x in range(-100, 101) if x != 0} == {1}
# By Euler's criterion, every element of the set above is a quadratic residue.
# Trivially O is always a square.
```

However, this does not illuminate exactly why we've constructed p as we did. The following is a better explaination.

We have insisted that $p \equiv 1(\bmod 8)$, so by the first and second supplements to quadratic reciprocity

$$
\left(\frac{-1}{p}\right)=\left(\frac{2}{p}\right)=1 .
$$

Additionally, by quadratic reciprocity we have for the primes $q \in S$ that

$$
\left(\frac{q}{p}\right)=\left(\frac{p}{q}\right)=\left(\frac{1}{q}\right)=1
$$

since $p \equiv 1(\bmod q)$. Finally, let $a \in\{-100, \ldots, 100\}$ be nonzero and let

$$
a=(-1)^{x} 2^{y} \prod_{q \in S} q^{e_{q}}
$$

be its prime factorization (where e_{q} is allowed to be 0). Then by multiplicativity of the Legendre symbol

$$
\left(\frac{a}{p}\right)=\left(\frac{(-1)^{x} 2^{y} \prod_{q \in S} q^{e_{q}}}{p}\right)=\left(\frac{(-1)^{x}}{p}\right) \cdot\left(\frac{2}{p}\right)^{y} \cdot \prod_{q \in S}\left(\frac{q}{p}\right)^{e_{q}}=1 .
$$

Thus every $-100 \leq a \leq 100$ is a square $\bmod p($ including, trivially, 0$)$.
2. We now finally solve the problem from the syllabus page. First, one notices by inspection that

$$
(-80538738812075974)^{3}+80435758145817515^{3}+12602123297335631^{3}=42
$$

(Credit of course to Booker and Sutherland. This took...a while to find.)
It is much easier to prove that 40,41 are not the sum of three cubes. Prove this. (Hint: look $\bmod 9$.

Solution: First we prove that if n is a sum of three integer cubes, then

$$
n \equiv 0,1,2,3,6,7,8 \quad(\bmod 9)
$$

This is just a matter of enumerating the cases.

$$
\begin{aligned}
& \text { import itertools } \\
& \text { sums } \left.=\left\{\left(x^{\wedge} 3+y^{\wedge} 3+z^{\wedge} 3\right) \% 9 \text { for } x, y, z \text { in itertools.product(range(9), repeat=3) }\right\}\right\} \\
& \text { assert sums }==\{0,1,2,3,6,7,8\}
\end{aligned}
$$

We see that $40 \equiv 4(\bmod 9)$ and $41 \equiv 5(\bmod 9)$, so cannot be the sum of three cubes.
3. (Advanced topics) Prove that for any $k \in \mathbb{N}$, there exists an odd prime p such that each $x \in\{-k, \ldots, k\}$ is a quadratic residue modulo p. One might find Dirichlet's theorem on primes in arithemtic progressions helpful.
4. (Advanced topics, Advertisement)

Recall from the solutions of assignment 3 the following remark:
Remark. It is presently unknown whether a 3×3 magic square of squares with integer entries exists. It is also "unknown" whether a 3×3 magic square of squares with entries in $\mathbb{Z} / n \mathbb{Z}$ exists for all sufficiently large n. See https: // www. youtube. com/ watch? v=FCczHiXPVcA.

Now, Voight and I were thinking that settling the $\mathbb{Z} / n \mathbb{Z}$ version of the question might be a nice prelude to an undergraduate research problem. If you find yourself drawn to the question, you could give the following an attempt:

Find a magic square of squares modulo 71. (Allegedly this exists.)

Comments about grading

See computing assignment 1 .

