Math 25 - Assignment 6

Due Thursday, November 10th, beginning of class.

1. Let p be a prime dividing

$$
a^{5}(x-1)^{5}-a^{4}(x-1)^{4} b+a^{3}(x-1)^{3} b^{2}-a^{2}(x-1)^{2} b^{3}+a(x-1) b^{4}-b^{5}
$$

for all $x \in \mathbb{Z}$. Prove that $p \mid a$ and $p \mid b$.

Solution: Let $f(x)$ denote the expression from the question. We have in particular that $p \mid f(1)=-b^{5}$. Because p is prime, we have that $p \mid b$.
Next, $p \mid f(2)$, so in particular p divides

$$
a^{5}(1)^{5}-b \cdot\left(a^{4}(1)^{4}+a^{3}(1)^{3} b^{1}-a^{2}(1)^{2} b^{2}+a(1) b^{3}-b^{4}\right)
$$

As $p \mid b$, we have that $p \mid a$.
2. Let a, b be integers such that $\operatorname{gcd}(a b, a+b)=1$. Prove that a, b are coprime.

Solution: By Bezout's identity we have that there are integers x, y such that

$$
x a b+y(a+b)=1
$$

Thus,

$$
a(x b+y)+y b=1 .
$$

In particular, $\operatorname{gcd}(a, b) \mid 1$, so a, b are coprime.
3. Let $f(x)$ be a polynomial with integer coefficients and let p, q be primes. If $f(x)$ has at least one root modulo p and modulo q, prove that $f(x)$ has a root modulo $p q$.

Solution: Let α_{p} denote a root of f modulo p and let α_{q} denote a root of f modulo q. By the CRT, we can choose $\alpha \in \mathbb{Z} / p q \mathbb{Z}$ such that

$$
\begin{array}{ll}
\alpha \equiv \alpha_{p} & (\bmod p) \\
\alpha \equiv \alpha_{q} & (\bmod q)
\end{array}
$$

We now claim that $f(\alpha) \equiv 0(\bmod p q)$. Indeed, write

$$
f(\alpha)=a_{n} \alpha^{n}+\cdots+a_{1} \alpha+a_{0}
$$

Then

$$
\begin{aligned}
f(\alpha) & \equiv a_{n} \alpha^{n}+\cdots+a_{1} \alpha+a_{0} \quad(\bmod p) \\
& \equiv a_{n}(\alpha \bmod p)^{n}+\cdots+a_{1}(\alpha \bmod p)+a_{0} \quad(\bmod p) \\
& \equiv a_{n}\left(\alpha_{p}\right)^{n}+\cdots+a_{1}\left(\alpha_{p}\right)+a_{0} \quad(\bmod p) \\
& \equiv f\left(\alpha_{p}\right) \quad(\bmod p) \\
& \equiv 0 \quad(\bmod p)
\end{aligned}
$$

Similarly $f(\alpha) \equiv 0(\bmod q)$. But then

$$
\begin{aligned}
& f(\alpha) \equiv 0 \quad(\bmod p) \\
& f(\alpha) \equiv 0 \quad(\bmod q)
\end{aligned}
$$

so by the CRT, $f(\alpha) \equiv 0(\bmod p q)$ (because solutions $\bmod p q$ are unique; in fact, the CRT lift is an isomorphism). Thus, we have found a root of f modulo $p q$.
4. Let p be a prime and let $f(x)=x^{p}(\bmod p)$. Prove that
(a) $f(0)=0$ and $f(1)=1$.
(b) $f(x+y) \equiv f(x)+f(y)(\bmod p)$.
(c) $f(x y) \equiv f(x) f(y)(\bmod p)$.
(d) $f(x)$ is a bijection.

The map $f(x)$ is called the Frobenius automorphism.

Solution: By Fermat's little Theorem, we have that $x^{p} \equiv x(\bmod p)$ for all $x \in \mathbb{Z} / p \mathbb{Z}$. Thus,

$$
f(x) \equiv x \quad(\bmod p)
$$

All four parts of this question trivially follow from this observation.

OK, so let's actually do something more interesting.
Theorem. Let R be any finite commutative ring with unity such that $p \equiv 0$ in R. Furthermore, assume that R has no nontrivial nilpotent elements - elements $x \neq 0$ such that $x^{m}=0$ for some $m \geq 1$. Then the Frobenius map $f(x)=x^{p}$ is an automorphism.

An example of such a ring is $\mathbb{F}_{p}[x] /\left(x^{2}+1\right) \mathbb{F}_{p}[x]$ when p is an odd prime, which has p^{2} elements. A non-example of such a ring is $\mathbb{F}_{2}[x] /\left(x^{2}+1\right) \mathbb{F}_{2}[x]$, because $x+1$ is nilpotent.

Proof. Clearly $f(0)=0$ and $f(1)=1$. Let $x, y \in R$. By the Binomial Theorem

$$
(x+y)^{p}=\sum_{i=0}^{p}\binom{p}{i} x^{p-i} y^{i} .
$$

Because $p \left\lvert\,\binom{ p}{i}\right.$ for all $1 \leq i \leq p$, and p is equivalent to 0 in R, we see that

$$
(x+y)^{p} \equiv x^{p}+y^{p} .
$$

Next, $(x y)^{p}=x^{p} y^{p}$ by exponent rules (and the fact that R is commutative).

The last thing to show is that $f(x)$ is a bijection. We first check that it is injective. If $f(x)=f(y)$, then $x^{p}-y^{p}=(x-y)^{p}=0$. We must have $x-y=0$, since R was assumed to have no nilpotent elements. In other words, $x=y$ and $f(x)$ is injective. Because R is finite, we must have that $f: R \rightarrow R$ is surjective as well.
5. You'll probably want to open up Sage or Python for this exercise. Let $n:=1333189866793$.
(a) Compute $a^{n-1} \bmod n$ for some example a 's. What do you notice? (Hint: use pow (a, e, n))
(b) Compute the Jacobi symbol $\left(\frac{5}{n}\right)$ by hand.
(c) Compute the expression $5^{\frac{n-1}{2}}(\bmod n)$.
(d) Use parts (b) and (c) to prove that n is not prime.

Remark: This type of calculation is the basis for the Solovay-Strassen primality test. It is much faster than factoring.

Solution:

(a) It tends to be the case that $a^{n-1} \equiv 1(\bmod n)$.

Remark: It turns out n is a Carmichael number, so $a^{n-1} \equiv 1(\bmod n)$ whenever $\operatorname{gcd}(a, n)=1$.
(b) Using reciprocity we see

$$
\left(\frac{5}{n}\right)=(-1)^{\frac{5-1}{2} \cdot \frac{n-1}{2}}\left(\frac{n}{5}\right)=(-1)^{2 \cdot(\text { some integer })}\left(\frac{n \bmod 5}{5}\right)=\left(\frac{3}{5}\right)=-1
$$

(c) We use Sage/Python to check that

$$
\text { pow }(5,(n-1) / / 2, n)==1
$$

(d) If $n>2$ is prime, then we must have by Euler's criterion

$$
5^{\frac{n-1}{2}} \equiv\left(\frac{5}{n}\right) \quad(\bmod n)
$$

However, parts (b) and (c) show that this equivalence does not hold for our particular n. Thus n cannot be prime.
6. Let p, q be odd primes. Prove that

$$
\frac{\left(\prod_{i=1}^{p-1} i\right)\left(\prod_{i=1}^{p-1} p+i\right) \ldots\left(\prod_{i=1}^{p-1}\left(\frac{q-1}{2}-1\right) p+i\right)\left(\prod_{i=1}^{\frac{p-1}{2}} \frac{q-1}{2} p+i\right)}{q \cdot 2 q \cdot \ldots \cdot \frac{p-1}{2} q} \equiv(-1)^{s}\left(\frac{q}{p}\right) \quad(\bmod p)
$$

where $s=0$ if $q \equiv 1(\bmod 4)$ and $s=1$ if $q \equiv 3(\bmod 4)$.
Solution: First, we note that the denominator is non-zero modulo p, and therefore invertible. This follows from the fact that

$$
\operatorname{gcd}(q, p)=1 \quad \operatorname{gcd}\left(\left(\frac{p-1}{2}\right)!, p\right)=1
$$

The p 's in the numerator reduce to 0 modulo p, so we have that the expression under consideration is

$$
\begin{aligned}
& \equiv \frac{\left(\prod_{i=1}^{p-1} i\right)\left(\prod_{i=1}^{p-1} i\right) \ldots\left(\prod_{i=1}^{p-1} i\right)\left(\prod_{i=1}^{\frac{p-1}{2}} i\right)}{q \cdot 2 q \cdot \ldots \cdot \frac{p-1}{2} q}(\bmod p) \\
& \equiv \frac{\left(\prod_{i=1}^{p-1} i\right)^{\frac{q-1}{2}}\left(\frac{p-1}{2}\right)!}{\left(\frac{p-1}{2}\right)!\cdot q^{\frac{p-1}{2}}} \\
& \equiv \frac{((p-1)!)^{\frac{q-1}{2}}}{q^{\frac{p-1}{2}}}
\end{aligned}
$$

By Wilson's Theorem and Euler's criterion, we have

$$
\equiv \frac{(-1)^{\frac{q-1}{2}}}{\left(\frac{q}{p}\right)} \equiv(-1)^{\frac{q-1}{2}} \cdot\left(\frac{q}{p}\right) \quad(\bmod p)
$$

Observe that $\frac{q-1}{2}$ is even if and only if $q \equiv 1(\bmod 4)$. Thus the value of s is as desired.

