
Math 25 — Assignment 6

Due Thursday, November 10th, beginning of class.

1. Let p be a prime dividing

a5(x− 1)5 − a4(x− 1)4b+ a3(x− 1)3b2 − a2(x− 1)2b3 + a(x− 1)b4 − b5

for all x ∈ Z. Prove that p | a and p | b.

Solution: Let f(x) denote the expression from the question. We have in particular that p | f(1) = −b5.
Because p is prime, we have that p | b.
Next, p | f(2), so in particular p divides

a5(1)5 − b · (a4(1)4 + a3(1)3b1 − a2(1)2b2 + a(1)b3 − b4).

As p | b, we have that p | a.

2. Let a, b be integers such that gcd(ab, a+ b) = 1. Prove that a, b are coprime.

Solution: By Bezout’s identity we have that there are integers x, y such that

xab+ y(a+ b) = 1.

Thus,
a(xb+ y) + yb = 1.

In particular, gcd(a, b) | 1, so a, b are coprime.

3. Let f(x) be a polynomial with integer coefficients and let p, q be primes. If f(x) has at least one root
modulo p and modulo q, prove that f(x) has a root modulo pq.

Solution: Let αp denote a root of f modulo p and let αq denote a root of f modulo q. By the CRT, we
can choose α ∈ Z/pqZ such that

α ≡ αp (mod p)

α ≡ αq (mod q)

We now claim that f(α) ≡ 0 (mod pq). Indeed, write

f(α) = anα
n + · · ·+ a1α+ a0.

Then

f(α) ≡ anαn + · · ·+ a1α+ a0 (mod p)

≡ an(α mod p)n + · · ·+ a1(α mod p) + a0 (mod p)

≡ an(αp)
n + · · ·+ a1(αp) + a0 (mod p)

≡ f(αp) (mod p)

≡ 0 (mod p)
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Similarly f(α) ≡ 0 (mod q). But then

f(α) ≡ 0 (mod p)

f(α) ≡ 0 (mod q)

so by the CRT, f(α) ≡ 0 (mod pq) (because solutions mod pq are unique; in fact, the CRT lift is an
isomorphism). Thus, we have found a root of f modulo pq.

4. Let p be a prime and let f(x) = xp (mod p). Prove that

(a) f(0) = 0 and f(1) = 1.

(b) f(x+ y) ≡ f(x) + f(y) (mod p).

(c) f(xy) ≡ f(x)f(y) (mod p).

(d) f(x) is a bijection.

The map f(x) is called the Frobenius automorphism.

Solution: By Fermat’s little Theorem, we have that xp ≡ x (mod p) for all x ∈ Z/pZ. Thus,

f(x) ≡ x (mod p).

All four parts of this question trivially follow from this observation.

OK, so let’s actually do something more interesting.

Theorem. Let R be any finite commutative ring with unity such that p ≡ 0 in R. Furthermore, assume
that R has no nontrivial nilpotent elements – elements x 6= 0 such that xm = 0 for some m ≥ 1. Then
the Frobenius map f(x) = xp is an automorphism.

An example of such a ring is Fp[x]/(x
2 + 1)Fp[x] when p is an odd prime, which has p2 elements. A

non-example of such a ring is F2[x]/(x
2 + 1)F2[x], because x+ 1 is nilpotent.

Proof. Clearly f(0) = 0 and f(1) = 1. Let x, y ∈ R. By the Binomial Theorem

(x+ y)p =

p∑
i=0

(
p

i

)
xp−iyi.

Because p |
(
p
i

)
for all 1 ≤ i ≤ p, and p is equivalent to 0 in R, we see that

(x+ y)p ≡ xp + yp.

Next, (xy)p = xpyp by exponent rules (and the fact that R is commutative).

The last thing to show is that f(x) is a bijection. We first check that it is injective. If f(x) = f(y), then
xp−yp = (x−y)p = 0. We must have x−y = 0, sinceR was assumed to have no nilpotent elements.
In other words, x = y and f(x) is injective. Because R is finite, we must have that f : R → R is
surjective as well.

5. You’ll probably want to open up Sage or Python for this exercise. Let n := 1333189866793.

(a) Compute an−1 mod n for some example a’s. What do you notice? (Hint: use pow(a,e,n))

(b) Compute the Jacobi symbol
(
5

n

)
by hand.

(c) Compute the expression 5
n−1
2 (mod n).
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(d) Use parts (b) and (c) to prove that n is not prime.

Remark: This type of calculation is the basis for the Solovay-Strassen primality test. It is much faster
than factoring.

Solution:

(a) It tends to be the case that an−1 ≡ 1 (mod n).
Remark: It turns out n is a Carmichael number, so an−1 ≡ 1 (mod n) whenever gcd(a, n) = 1.

(b) Using reciprocity we see(
5

n

)
= (−1)

5−1
2 ·n−1

2

(n
5

)
= (−1)2·(some integer)

(
n mod 5

5

)
=

(
3

5

)
= −1.

(c) We use Sage/Python to check that

pow(5, (n-1) // 2, n) == 1

(d) If n > 2 is prime, then we must have by Euler’s criterion

5
n−1
2 ≡

(
5

n

)
(mod n).

However, parts (b) and (c) show that this equivalence does not hold for our particular n. Thus n
cannot be prime.

6. Let p, q be odd primes. Prove that(∏p−1
i=1 i

)(∏p−1
i=1 p+ i

)
. . .
(∏p−1

i=1

(
q−1
2 − 1

)
p+ i

)(∏ p−1
2

i=1
q−1
2 p+ i

)
q · 2q · . . . · p−1

2 q
≡ (−1)s

(
q

p

)
(mod p)

where s = 0 if q ≡ 1 (mod 4) and s = 1 if q ≡ 3 (mod 4).

Solution: First, we note that the denominator is non-zero modulo p, and therefore invertible. This
follows from the fact that

gcd(q, p) = 1 gcd

((
p− 1

2

)
!, p

)
= 1.

The p’s in the numerator reduce to 0 modulo p, so we have that the expression under consideration is

≡

(∏p−1
i=1 i

)(∏p−1
i=1 i

)
. . .
(∏p−1

i=1 i
)(∏ p−1

2
i=1 i

)
q · 2q · . . . · p−1

2 q
(mod p)

≡

(∏p−1
i=1 i

) q−1
2 (

p−1
2

)
!(

p−1
2

)
! · q p−1

2

≡ ((p− 1)!)
q−1
2

q
p−1
2

By Wilson’s Theorem and Euler’s criterion, we have

≡ (−1)
q−1
2(

q

p

) ≡ (−1)
q−1
2 ·

(
q

p

)
(mod p).

Observe that q−1
2 is even if and only if q ≡ 1 (mod 4). Thus the value of s is as desired.
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