
Math 25 Fall 2022

Problem Solving Exercise 4

Your name:

INSTRUCTIONS

You may begin the “exam” when ready.

Write your name in the space provided above.

Use of calculators is not permitted on the “exam”. They are not likely to be of much help
anyways.

Unless otherwise stated, you must justify your solutions to receive full credit. Work that is
illegible may not be graded. Work that is scratched out will not be graded.

It is fine to leave you answer in a form such as ln(0.02) or
√

123412 or (1341)4(1231)−1. However,

if an expression can be easily simplified (such as eln(0.02) or cosπ), you should simplify it.

This is not actually an exam!

The “exam” has been created with the intended length of 50 minutes. This midterm is collected
at the end of the X-hour.

Good luck!
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Long Answer Questions

(1) (10 points) The following ciphertext

36 04 04

was encrypted using the RSA public key (e = 5, n = 51). Find the plaintext associated to
this message. Each block has size 2, there are no spaces. For convenience, the following
table is provided:

x 1 2 3 4 5 6 7 8 9 10
4x mod 51 4 16 13 1 4 16 13 1 4 16
36x mod 51 36 21 42 33 15 30 9 18 36 21

Solution. First we find the private key. We do so by solving ex = 5d ≡ 1 (mod φ(51)).
By multiplicativity φ(51) = φ(3)φ(17) = 32. By inspection d = 13.

Via the table we see

413 ≡ 41043 ≡ 42 · 43 ≡ 45 ≡ 4 (mod 51).

Again using the table (note repeated entries)

3613 ≡ 21 · 42 ≡ 15 (mod 51).

The message is ’ODD’. �



(2) (10 points) Let N = 301 · 97 + 2. Compute

(
N − 261

N + 40

)
.

Solution. First, notice that N + 40 ≡ 1 ·3 + 2 ≡ 1 (mod 4) and N + 40 ≡ 1 ·5 + 2 + 0 ≡ 7
(mod 8). Next,(

N − 261

N + 40

)
=

(
−301

N + 40

)
=

(
−1

N + 40

)(
N + 40

301

)
=

(
−1

N + 40

)(
42

301

)
=

(
−1

N + 40

)(
42

301

)
=

(
−1

N + 40

)(
2

301

)(
3

301

)(
7

301

)
.

By reciprocity for Jacobi symbols and supplements

= (1) · (1) ·
(

301

3

)(
301

7

)
=

(
1

3

)(
301

7

)
.

It turns out that 30+5 · (1) ≡ 0 (mod 7), so 7 | 301. Therefore, the entire Jacobi symbol
is 0. �



(3) (10 points) Consider the following function

g(n) :=
∑
pe || n
p prime

p− 1

2
e

Show that when n is an odd positive integer, n ≡ (−1)g(n) (mod 4).

Solution. Let n =
k∏
i=1

peii be the prime factorization; when n is odd, so are all the primes.

Notice for an odd integer n that n ≡ (−1)
n−1
2 (mod 4). Thus,

n ≡
k∏
i=1

peii ≡
k∏
i=1

(−1)ei
pi−1

2 ≡ (−1)
∑k

i=1 ei
pi−1

2 (mod 4).

Essentially by definition,

g(n) =
k∑
i=1

ei ·
pi − 1

2
. �



(4) (10 points) Is the following statement true:

Theorem (?). Let p be an odd prime. Then the equation x2 ≡ 1 (mod pe) has precisely
two solutions for x ∈ Z/peZ.

If the statement is true, provide a proof. If not, provide a counter-example.

Solution. The statement is indeed true. Pick a primitive element α mod pe. Then

(Z/peZ)× = {1, α, . . . , αφ(pe)−1}.
If α2j ≡ 1 (mod pe), then φ(pe) | 2j. Because 0 ≤ j < φ(pe), we see 0 ≤ 2j < 2φ(pe).

The only multiples of φ(pe) in this interval are 0 and φ(pe). That is, the only solutions

to α2j ≡ 1 (mod pe) are j = 0,
φ(pe)

2
. �



(5*) (4 points) Let a0, . . . , ak ∈ Z/pZ and let 0 ≤ k < p. Show that there exists a polynomial
f(x) ∈ Z/pZ[x] of degree at most k such that f(x) satisfies the system of congruences

f(x) ≡ a0 (mod x)

. . .

f(x) ≡ ak (mod x− k)

One can think of this as a Chinese Remainder Theorem for polynomials.

Solution. Recall from the division algorithm for polynomials that for any α ∈ Z/pZ,

f(x) = g(x)(x− α) + f(α).

We consider the polynomials

N(x) =

k−1∏
i=0

(x− i), N̂i(x) =
N(x)

x− i
.

Observe that N̂i(x) (mod x − i) = N̂i(i) 6≡ 0 (mod p), since 0, . . . , k are in distinct
residue classes modulo p by assumption. In particular, there are solutions ci ∈ Z/pZ to
the congruences

N̂i(i) · ci ≡ 1 (mod p).

We now finally construct the polynomial. We set

F (x) =

k∑
j=0

cj · N̂j(x) · aj .

By construction, we have that N̂i(j) = 0 unless i = j. Thus

F (i) = ciN̂i(i) · ai = ai (in Z/pZ).

Furthermore, each N̂i(x) has degree k, so F (x) has degree at most k, as desired. �



(6**) Let M be a set of 1985 positive integers, none of which has a prime factor larger than
23. Prove that there exists a subset of M with four elements whose product is a perfect
4-th power.

Solution. For entertainment purposes, the solutions have not been included. �



(This page is intentionally left blank in case you need extra space for any of the problems. If
you use this page for a particular problem, it is essential that you make a note on
the page where the problem appears, indicating that your work is continued here.)


