
Math 25 – Group Programming Assignment 2i – Solutions

1. Let p, q be distinct Sophie Germain primes and let n = (2p+ 1)(2q + 1).

(a) Prove that Z/nZ× is not cyclic. That is, there is no primitive element.

(b) Prove that there exists an element of order 2pq.

(c) Let p = 100811 and q = 122231. Find an element modulo n of the largest possible order.

Solution. (a) Notice that 2p + 1, 2q + 1 ≥ 5 are distinct odd primes (by the definition of
Sophie Germain). Thus n is not of the form 1, 2, 4, pe, 2pe, so Z/nZ× does not have a
primitive element.

(b) Both Z/(2p + 1)Z× and Z/(2q + 1)Z× have primitive elements. We choose two such
elements α, β (respectively).

The orders of α and β are 2p and 2q, respectively. By the CRT, we may find a solution
x to the system

x ≡ α (mod 2p+ 1)

x ≡ β (mod 2q + 1)

Notice for all m ∈ N that

xm ≡ αm (mod 2p+ 1)

xm ≡ βm (mod 2q + 1)

Because the CRT lifting map is a bijection, we have that xm ≡ 1 (mod n) if and only if
αm ≡ 1 (mod 2p+1) and βm ≡ 1 (mod 2q+1). The smallest such m must be a multiple
of 2p and 2q. The least common multiple is 2pq, and this value is seen to do the trick.
Thus, x is an element of order 2pq.

(c) Trying elements randomly and checking if they are primitive is pretty efficient. The
following code shows 123 is an element of order 2pq.
p = 100811; q = 122231; n = (2*p + 1) * (2*q + 1);

def check_order(x):
return pow(x, 2*q, n) != 1 and pow(x, 2*p, n) != 1 and pow(x, p*q, n) != 1

assert check_order(123)

So why does it work? A combination of two things. First:

Lemma 1. The order of any element modulo n divides 2pq.

Proof. By the CRT, we have xm ≡ 1 (mod n) if and only if xm ≡ 1 (mod 2p + 1) and
xm ≡ 1 (mod 2q + 1). For any x ∈ Z/nZ×, we see that x2pq ≡ 1 (mod n) by the last
statement and Fermat’s little Theorem. Thus m | 2pq.

The second is a primitive element test like result. The only possible orders are

1, 2, p, q, 2p, 2q, pq, 2pq.

All we have to do is ensure that the order is not a divisor of 2p, 2q, or pq.

1

2. A company makes and sells devices. What these devices do is not important for us to know,
but what is important is that each device comes with RSA keys. The private key is safely
kept hidden and the public key is available for access on the internet.

It was Bob’s job to write the code that generated the RSA keys for these devices. He came
up with this

def make_rsa_key():

load secret_list_of_primes, a list of 50 random 512 bit primes.

p = random(secret_list_of_primes)

q = random(secret_list_of_primes)

assert p != q

return p*q, rsa_exponents(p, q)

Perhaps Bob had a lot on his mind that day – a mild slight from a stranger that weighs on
one’s mind more than it should, or, some trouble remembering that eleventh item on the list
of groceries he promised to procure for his dear Linda; advil..rosemary... Alas, it does not
matter to us – our concern is with the terrible mistake Bob has made.

Let us assume that rsa exponents does what it is supposed to. Available on canvas is a data
file called pub keys. It contains a list of 250 RSA moduli generated with Bob’s code.

Your task: Determine Bob’s secret list of 50 primes.

Solution. Factoring the RSA moduli is hopeless. Instead, we weaponize the birthday paradox.
It is a statistical certainty that the RSA moduli will share primes in common. Computing
GCDs is extremely fast, so we can just compute the GCDs of all possible pairs and be
reasonably confident this will work.

with open("pub_keys", "r") as F:
moduli = [int(x) for x in F.readlines()]

pub_gcds = {gcd(a, b) for a in moduli for b in moduli if a != b}
pub_gcds.remove(1)

assert len(pub_gcds) == 50 # These are Bob’s primes.

Note: If N and M are non-equal RSA moduli with a non-trivial gcd, then there exist primes
p, q, r such that N = pq and M = pr. From Assignment 3, gcd(N,M) = p.

Remark: Actually, 250 moduli is overkill. For those who’ve run into Graph Theory, you
make the following graph G whose vertices are the primes in Bob’s list and where p ∼ q if
N = pq is one of the published moduli. To break all the keys, you only need each connected
component of G to have size at least 3. You need at least 34 moduli to break everything.
After this point, the probability you cannot break everything decays exponentially. However,
this is an exercise for another course.

Remark: This type of attack is very real. Please math responsibly.

https://www.researchgate.net/publication/266352987_Ron_was_wrong_Whit_is_right

2

