Math 25 - Assignment 4

Due Thursday, October 27th, beginning of class.

1. You'll want a calculator for this exercise. Let $(e, n)=(17,397801)$. What is the ciphertext (encrypted message) associated to

BOB LOBLAW LAW BLOG

In this case, we associate spaces to the value 32 , pad with zeros, and use chunks of 3 characters. For example, we get the encoding

$$
{ }^{\prime} \mathrm{EX} \mathrm{~T} \mathrm{~T}^{\prime} \rightarrow(052432 \quad(\bmod n), 200000 \quad(\bmod n)) .
$$

Solution: First we carve the string into chunks, giving
’BOB' । ’ LO' । 'BLA' । ’W L' । 'AW' । 'BLO' । ’G’

Converting to numbers gives

$$
021502|321215| 021201|233212| 012332|021215| 070000
$$

To encrypt each block m, we simply compute $m^{e}(\bmod n)$. This gives the ciphertext:

$$
004050|348060| 334015|175890| 329235|115807| 026644
$$

Remark: Adding leading zeros is nice, since chunks always have a fixed size. The ciphertext really looks like

004050348060334015175890329235115807026644
and the decrypted encoded text looks like
021502321215021201233212012332021215070000
Knowing the chunks have six symbols makes parsing easier. (For a computer.)
Remark: Python makes the conversion easy

```
>>> [ord(c)-64 for c in 'BOB LOBLAW LAW BLOG']
[2, 15, 2, -32, 12, 15, 2, 12, 1, 23, -32, 12, 1, 23, -32, 2, 12, 15, 7]
```

Remark: In practice, characters are encoded/decoded via their ASCII or Unicode values.
2. Let a, n be coprime integers and let e be coprime to $\phi(n)$. If a has order d in $\mathbb{Z} / n \mathbb{Z}^{\times}$, prove that a^{e} also has order d.
Solution: Because e is coprime to $\phi(n)$, it is coprime to any divisor of $\phi(n)$. By Lagrange's theorem, the order d of the element a must be a divisor of $\phi(n)$. In particular, there exists an x such that $e x \equiv 1$ $(\bmod d)$. Now

$$
a \equiv\left(a^{e}\right)^{x} \quad(\bmod n)
$$

If m is the order of a^{e}, then $a^{m} \equiv a^{e x m} \equiv 1(\bmod n)$. In particular, $d \mid m$. On the other hand,

$$
\left(a^{e}\right)^{d} \equiv\left(a^{d}\right)^{e} \equiv 1 \quad(\bmod n)
$$

so $m \mid d$. Thus $d=m$.

