
Math 25 Fall 2022

Problem Solving Exercise 2

Your name:

INSTRUCTIONS

You may begin the “exam” when ready.

Write your name in the space provided above.

Use of calculators is not permitted on the “exam”. They are not likely to be of much help
anyways.

Unless otherwise stated, you must justify your solutions to receive full credit. Work that is
illegible may not be graded. Work that is scratched out will not be graded.

It is fine to leave you answer in a form such as ln(0.02) or
√

123412 or (1341)4(1231)−1. However,

if an expression can be easily simplified (such as eln(0.02) or cosπ), you should simplify it.

This is not actually an exam!

The “exam” has been created with the intended length of 50 minutes. This midterm is collected
at the end of the X-hour.

Good luck!
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Long Answer Questions

(1) (10 points) The following ciphertext

32 15 32

was encrypted using the RSA public key (e = 5,n = 35). Find the plaintext associated
to this message. Each block has size 2, there are no spaces. For convenience, the following
table is provided:

x 1 2 4 8 16
15x mod 35 15 15 15 15 15
32x mod 35 32 9 11 16 11

Solution. First we find the private key. We do so by solving ex = 5d ≡ 1 (mod φ(35)).
By multiplicativity φ(35) = φ(5)φ(7) = 24. By inspection d = 5.

Via the table we see

155 ≡ 154+1 ≡ 15 · 15 ≡ 152 ≡ 15 (mod 35).

One can be clever and notice that 25 = 32. Alternatively, using the table,

325 ≡ 324 · 32 ≡ 11 · 32 ≡ (320 + 32) ≡ 352 ≡ 2 (mod 35).

In any case the message is ’BOB’. �



(2) (10 points) The Fibonnaci numbers are defined recursively by the formula f1 = 1, f2 = 1,
and

fn+2 = fn+1 + fn, n ≥ 1.

For example, the first few Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, . . ..

Prove that consecutive Fibonacci numbers are coprime.

Solution. We proceed by induction. The base case gcd(f1, f2) = 1 is clear. We assume
for the sake of induction that gcd(fn, fn+1) = 1. Then by Bezout we may find integers
x, y so that

xfn + yfn+1 = 1.

But fn+2 − fn+1 = fn, so

x(fn+2 − fn+1) + yfn+1 = xfn+2 + (y − x)fn+1 = 1.

In other words, gcd(fn+1, fn+2) | 1, i.e., it is 1. This shows the result for n implies the
result for n+ 1, and by induction the result is true in general. �



(3) (10 points) Let n be an integer with prime factorization pe11 . . . pekk and let a ∈ Z/nZ.
Prove that a is a square modulo n if and only if each a (mod peii ) is a square.

Solution. (⇒) If a ≡ x2 (mod n), then we reduce this equation modulo peii to see a ≡ x2
(mod peii ). That is, a is a square modulo each prime power.

(⇐) Write a ≡ x2i (mod peii ) for each i. By the CRT, we see that there exists an x
(mod n) such that x ≡ xi (mod peii ) for each i. Now

x2 ≡ x2i ≡ a (mod peii )

for each i. By uniqueness in the Chinese Remainder Theorem, we have x2 ≡ a (mod n).
Thus a is a square. �



(4*) (10 points) Is the following statement true:

Theorem (?). Let p be an odd prime and let k be a positive integer such that p− 1 - k.
Then

p−1∑
a=0

ak ≡ 0 (mod p).

If the statement is true, provide a proof. If not, provide a counter-example.

Solution. The statement is indeed true. Let α be a primitive element modulo p. Then

p−1∑
a=0

ak = 0k +

p−1∑
a=1

ak =

p−2∑
j=0

(αj)k

because powers of α enumerate all of the elements of Z/pZ×. Because p− 1 - k, we have

that αk 6≡ 1 (mod p) because it is a primitive element. (We have αe ≡ 1 (mod p) if and
only if the order of α divides e, from Lagrange.)

Thus, we have
p−2∑
j=0

(αj)k ≡ αk(p−1) − 1

αk − 1
(mod p)

and the denominator is a unit, so the expression is well-defined. (Dividing is the same
as multiplying by the inverse, provided the inverse exists.) By Fermat’s little theorem
the numerator is zero modulo p, and the claim is proven.

Remark: The indexing of the sum is slightly different than the solution I gave earlier.
Both are valid approaches. �



(5*) (4 points) A polynomial f(x) ∈ Z/pZ[x] is irreducible if any factorization f(x) = a(x)b(x)
has either deg a(x) = 0 or deg b(x) = 0. Prove that any non-zero polynomial f(x) 6= 0
admits a factorization

f(x) =
k∏

i=1

pi(x)ei

where each pi(x) is irreducible and each ei ≥ 1 is an integer. (You do not need to show
the factorization is unique.)

Solution. We proceed by induction on the degree. For polynomials of degree 0, any
factorization f(x) = a(x)b(x) has both deg a(x) = deg b(x) = 0, since p is prime (see a
previous homework).

We assume the result for all degrees up to some d ≥ 0 and show this implies the degree
d+ 1 case. Let f(x) be a polynomial of degree d+ 1. If f(x) is irreducible, then f(x) =
f(x)1 is an irreducible factorization. Otherwise, f(x) is reducible, so we write f(x) =
a(x)b(x) for some a(x), b(x) of positive degree. Because deg f(x) = deg a(x) + deg b(x),
we have that deg a(x),deg b(x) ≤ d. In other words, by the induction hypothesis,

f(x) = a(x)b(x) =

k∏
i=1

pi(x)ei ·
∏̀
i=1

qi(x)ei

i.e., f(x) admits a factorization into irreducibles, as claimed. By induction we are done.
�



(This page is intentionally left blank in case you need extra space for any of the problems. If
you use this page for a particular problem, it is essential that you make a note on
the page where the problem appears, indicating that your work is continued here.)


