
Math 25 — Assignment 2

Due Thursday, October 13th, beginning of class.

1. Write down the addition and multiplication tables for Z/4Z. Is the following statment true:

If 6x ≡ 2 (mod 4), then 3x ≡ 1 (mod 4).

Solution:
The addition and multiplication tables are, respectively,

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

× 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

We can see from the table the statement is false. If x = 1, then 6x ≡ 2 (mod 4), but 3x 6≡ 1 (mod 4).
The problem comes from the fact that 2 has no multiplicative inverse.

2. Solve the linear congruence equation

56x ≡ 29 (mod 101).

Solution: Using the XGCD algorithm we find that 56(−9)+101(5) = 1. Thus, gcd(56, 101) = 1 and
56 · (−9) ≡ 1 (mod 101). In particular,

56(−9 · 29) ≡ 29 (mod 101).

In other words, x ≡ 42 (mod 101) is the unique congruence class of solutions. (See Corollary 3.8 of
the book.)

3. Find all integers x satisfying the simultaneous linear congruences:

2x ≡ 2 (mod 11)

5x ≡ 3 (mod 12)

31x ≡ 4 (mod 13)

x ≡ 5 (mod 17)

x ≡ 6 (mod 19)

(You may want a calculator on hand for this one.)

Solution: Because gcd(2, 11) = gcd(5, 12) = gcd(31, 13) = 1, the solution to each individual
congruence is unique. The numbers are small, so we see by inspection that:

x ≡ 1 (mod 11)

x ≡ 3 (mod 12)

x ≡ 6 (mod 13)

x ≡ 5 (mod 17)

x ≡ 6 (mod 19)
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(You can also use XGCD, but this is overkill.)

We next want to compute the lifting map from the Chinese Remainder Theorem. This requires solving

N̂i · ci ≡ 1 (mod ni)

where ni = 11, 12, 13, 17, 19 and N̂i are as in Question 4. In particular

N̂1c1 ≡ 1 (mod n)1
N̂2c2 ≡ 1 (mod n)2
N̂3c3 ≡ 1 (mod n)3
N̂4c4 ≡ 1 (mod n)4
N̂5c5 ≡ 1 (mod n)5

=⇒

8c1 ≡ 1 (mod 11)
c2 ≡ 1 (mod 12)
9c3 ≡ 1 (mod 13)
15c4 ≡ 1 (mod 17)
7c5 ≡ 1 (mod 19)

=⇒

c1 ≡ 7 (mod 11)
c2 ≡ 1 (mod 12)
c3 ≡ 3 (mod 13)
c4 ≡ 8 (mod 17)
c5 ≡ 11 (mod 19)

.

The CRT lifting map is then

ψ(x1, x2, x3, x4, x5) = 50388·7x1+46189·x2+42636·3x3+32604·8x4+29172·11x5 (mod 554268).

This gives that
x = ψ(1, 3, 6, 5, 6) ≡ 54099 (mod 554268).

Of course, we want all integers satisfying these congruences. Because the CRT guarantees that this is
the unique lift satisfying the simultaneous system of congruences, which itself had unique solutions,
we have that the set of all integer solutions is given by

{54099 + 554268q : q ∈ Z}.

Remark: Nothing this computationally intensive will be on the midterm. This is the type of exercise
everyone has to do at least once in their life to really “get” the CRT.

Remark: Most computer algebra systems have a built-in CRT method. In sage, this is

crt([1,3,6,5,6], [11,12,13,17,19]) # Output 54099.

4. Recall the CRT-lift function f from the lectures, defined by:

f(x1, . . . , xk) := N̂1c1x1 + N̂2c2x2 + . . .+ N̂kckxk (mod N)

where n1, . . . , nk are coprime integers, N := n1 . . . nk, N̂i := N/ni, and the ci are chosen so that
ciN̂i ≡ 1 (mod ni).

Prove the following assertions:

(a) f is well-defined. That is, if yi are integers such that yi ≡ xi (mod ni), then

f(y1, . . . , yk) ≡ f(x1, . . . , xk) (mod N)

(b) f is invertible.

(c) f(0, . . . , 0) ≡ 0 (mod N).

(d) f(1, . . . , 1) ≡ 1 (mod N).

(e)
f(x1, . . . , xk) + f(y1, . . . , yk) ≡ f(x1 + y1, . . . , xk + yk) (mod N).

(f) (Advanced topics) That:

f(x1, . . . , xk) · f(y1, . . . , yk) ≡ f(x1 · y1, . . . , xk · yk) (mod N).

The jargon for this is to say that f : Z/n1Z× · · · ×Z/nkZ→ Z/NZ is an isomorphism of rings (with
unity).
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Solution:

(a) Let us write yi = niqi + xi for some integers qi. Then

f(y1, . . . , yk) =

k∑
i=1

N̂ici(niqi + xi)

=

k∑
i=1

N̂iciniqi +

k∑
i=1

N̂icixi

=

k∑
i=1

Nciqi + f(x1, . . . , xk)

≡ f(x1, . . . , xk) (mod N).

The second last equality is from the definition of the N̂i. In particular we see that f is well-defined
on residue classes.

(b) We claim that the inverse to f is given by the map

g(y) := (y mod n1, . . . , y mod nk).

Observe

g(f(x1, . . . , xk)) =

(
k∑

i=1

N̂icixi mod n1, . . . ,

k∑
i=1

N̂icixi mod nk

)
.

Let us examine each coordinate. We have

k∑
i=1

N̂icixi ≡ N̂jcjxj ≡ xj (mod nj)

because nj | N̂i if i 6= j, and furthermore, N̂jcj ≡ 1 (mod nj) by definition. In other words,

g(f(x1, . . . , xk)) = (x1, . . . , xk)

that is, g is an inverse to f . Therefore f is a bijection.

(c) f(0, . . . , 0) =
∑k

i=1 ciN̂i · 0 ≡ 0 (mod N).

(d) Let use use the inverse g to f constructed before. We have

g(1) = (1, . . . , 1).

Because g(f(1, . . . , 1)) = (1, . . . , 1), we have f(1, . . . , 1) = 1, since inverses are injective.

(e) Note

f(x1, . . . , xk) ≡
k∑

i=1

ciN̂i · xi, f(y1, . . . , yk) ≡
k∑

i=1

ciN̂i · yi,

and

f(x1 + y1, . . . , xk + yk) ≡
k∑

i=1

ciN̂i · (xi + yi) ≡
k∑

i=1

ciN̂i · xi +
k∑

i=1

ciN̂i · yi (mod N)

from which the claim follows.

5. Let p be a prime and let f(x), g(x) ∈ Z/pZ[x] be nonzero polynomials modulo p. The degree of a
non-zero polynomial anxn + . . . + a0 ∈ Z/pZ[x] is the largest i such that ai 6≡ 0 (mod p). For
example, if p = 7, then

deg(7x3 + 5x2 + 1) = 2.
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(There are different conventions for what deg(0) should be.)

Prove that
deg(f(x)g(x)) = deg(f(x)) + deg(g(x)).

Is the statement still true if we do not assume p is prime?

Solution: Let f = anx
n + . . .+ a0 and g = bmx

m + . . .+ b0 with an, bn non-zero modulo p. Then

fg = anbmx
n+m + · · ·+ a0b0.

Observe that anbm 6≡ 0 (mod p) because p is prime. By definition of the degree, deg(fg) = n+m =
deg(f) + deg(g).

The claim is not true if the modulus is not prime. Observe

(2x+ 1)(3x) ≡ 6x2 + 3x ≡ 3x (mod 6),

and deg(2x+ 1) = deg(3x) = 1.

6. A 3× 3 grid of distinct numbers
a1 a2 a3
a4 a5 a6
a7 a8 a9

is called magic if the sum of the triples of entries in the rows, columns, and two main diagonals are all
equal to the same number. For example, the following is the Lo Shu magic square

2 7 6
9 5 1
4 3 8

A magic square of squares is a magic square, where all of the entries are squares.

The notion of a magic square makes sense if we say that the entries are elements of Z/nZ. We let
n > 1 be an integer and let

n =

k∏
i=1

peii

be its prime factorization.

(a) (Advanced topics) Prove that each entry is a square modulo n if and only if it is a square modulo
each peii .

(b) Let a, b, c be three integers. Prove that a + b + c ≡ 0 (mod n) if and only if a + b + c ≡ 0
(mod pei) for each prime power.

Conclude the following result:

Proposition 0.1. Prove that if there exists a magic square of squares modulo peii for each i, then there
exists a magic square of squares modulo n.

Remark 0.2. For very silly reasons, the converse is false. Consider the following magic square mod-
ulo 10. Reducing modulo 2 gives the following grid

0 1 0
1 1 1
0 1 0

Because the entries of a magic square are distinct, this grid is not a magic square modulo 2. In fact, it
is impossible to have a magic square modulo 2.
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Solution:
(b) By the Chinese Remainder Theorem, we have that x ≡ 0 (mod pei) if and only if x ≡ 0 (mod n).
Because a+ b+ c is just a number, the result follows immediately.

Let us now address the conclusion about magic squares of squares. Denote by

M` :=

x
(`)
11 x

(`)
12 x

(`)
13

x
(`)
21 x

(`)
22 x

(`)
23

x
(`)
31 x

(`)
32 x

(`)
33

a given magic square of squares modulo pe`` , for each 1 ≤ ` ≤ k. Let xij ∈ Z/nZ be the unique
element such that xij ≡ x(`)ij (mod pe`` ) given by the CRT. We claim that

M :=
x11 x12 x13
x21 x22 x23
x31 x32 x33

is a magic square of squares modulo n. From part (a), each xij is a square because it is a square modulo
each pe`` . The entries of M are distinct, since they are distinct modulo some pe`` . Finally, we claim that
M is magic.

Because each M` is magic, we let s` be the sum of any row/column/diagonal of M` modulo pe`` . We
then set s to be the CRT lift of (s1, . . . , sk). Note that for any `, we have

x11 + x22 + x33 ≡ x(`)11 + x
(`)
22 + x

(`)
33 ≡ s` (mod pe`` )

thus, by the CRT, we have that

x11 + x22 + x33 ≡ s (mod n).

Similarly, the sum of any row/column/diagonal of M is congruent to s (mod n). Thus M is magic
modulo n.

Remark 0.3. It is presently unknown whether a 3 × 3 magic square of squares with integer entries
exists. It is also “unknown” 1 whether a 3× 3 magic square of squares with entries in Z/nZ exists for
all sufficiently large n. See https://www.youtube.com/watch?v=FCczHiXPVcA.

1Prof. Voight and I have ideas about how to solve this.
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