Math 25 - Assignment 2

Due Thursday, October 13th, beginning of class.

1. Write down the addition and multiplication tables for $\mathbb{Z} / 4 \mathbb{Z}$. Is the following statment true:

If $6 x \equiv 2(\bmod 4)$, then $3 x \equiv 1(\bmod 4)$.

Solution:

The addition and multiplication tables are, respectively,

We can see from the table the statement is false. If $x=1$, then $6 x \equiv 2(\bmod 4)$, but $3 x \not \equiv 1(\bmod 4)$. The problem comes from the fact that 2 has no multiplicative inverse.
2. Solve the linear congruence equation

$$
56 x \equiv 29 \quad(\bmod 101)
$$

Solution: Using the XGCD algorithm we find that $56(-9)+101(5)=1$. Thus, $\operatorname{gcd}(56,101)=1$ and $56 \cdot(-9) \equiv 1(\bmod 101)$. In particular,

$$
56(-9 \cdot 29) \equiv 29 \quad(\bmod 101)
$$

In other words, $x \equiv 42(\bmod 101)$ is the unique congruence class of solutions. (See Corollary 3.8 of the book.)
3. Find all integers x satisfying the simultaneous linear congruences:

$$
\begin{aligned}
2 x & \equiv 2 \quad(\bmod 11) \\
5 x & \equiv 3 \quad(\bmod 12) \\
31 x & \equiv 4 \quad(\bmod 13) \\
x & \equiv 5 \quad(\bmod 17) \\
x & \equiv 6 \quad(\bmod 19)
\end{aligned}
$$

(You may want a calculator on hand for this one.)
Solution: Because $\operatorname{gcd}(2,11)=\operatorname{gcd}(5,12)=\operatorname{gcd}(31,13)=1$, the solution to each individual congruence is unique. The numbers are small, so we see by inspection that:

$$
\begin{array}{ll}
x \equiv 1 & (\bmod 11) \\
x \equiv 3 & (\bmod 12) \\
x \equiv 6 & (\bmod 13) \\
x \equiv 5 & (\bmod 17) \\
x \equiv 6 & (\bmod 19)
\end{array}
$$

(You can also use XGCD, but this is overkill.)
We next want to compute the lifting map from the Chinese Remainder Theorem. This requires solving

$$
\hat{N}_{i} \cdot c_{i} \equiv 1 \quad\left(\bmod n_{i}\right)
$$

where $n_{i}=11,12,13,17,19$ and \hat{N}_{i} are as in Question 4. In particular

$$
\begin{array}{llrllll}
\hat{N}_{1} c_{1} \equiv 1 & (\bmod n)_{1} & & 8 c_{1} \equiv 1 & (\bmod 11) \\
\hat{N}_{2} c_{2} \equiv 1 & (\bmod n)_{2} & & c_{2} \equiv 1 & (\bmod 12) \\
\hat{N}_{3} c_{3} \equiv 1 & (\bmod n)_{3} & \Longrightarrow & & c_{1} \equiv 7 & (\bmod 11) \\
c_{2} \equiv 1 & (\bmod 12) \\
\hat{N}_{4} c_{4} \equiv 1 & (\bmod n)_{4} & & 15 c_{4} \equiv 1 & (\bmod 13) & (\bmod 17) \\
\hat{N}_{5} c_{5} \equiv 1 & (\bmod n)_{5} & & 7 c_{5} \equiv 1 & (\bmod 19) & & c_{3} \equiv 3 \\
(\bmod 13) \\
c_{4} \equiv 8 & (\bmod 17) \\
c_{5} \equiv 11 & (\bmod 19)
\end{array} .
$$

The CRT lifting map is then
$\psi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=50388 \cdot 7 x_{1}+46189 \cdot x_{2}+42636 \cdot 3 x_{3}+32604 \cdot 8 x_{4}+29172 \cdot 11 x_{5} \quad(\bmod 554268)$.
This gives that

$$
x=\psi(1,3,6,5,6) \equiv 54099 \quad(\bmod 554268)
$$

Of course, we want all integers satisfying these congruences. Because the CRT guarantees that this is the unique lift satisfying the simultaneous system of congruences, which itself had unique solutions, we have that the set of all integer solutions is given by

$$
\{54099+554268 q: q \in \mathbb{Z}\} .
$$

Remark: Nothing this computationally intensive will be on the midterm. This is the type of exercise everyone has to do at least once in their life to really "get" the CRT.

Remark: Most computer algebra systems have a built-in CRT method. In sage, this is

```
crt([1,3,6,5,6], [11,12,13,17,19]) # Output 54099.
```

4. Recall the CRT-lift function f from the lectures, defined by:

$$
f\left(x_{1}, \ldots, x_{k}\right):=\hat{N}_{1} c_{1} x_{1}+\hat{N}_{2} c_{2} x_{2}+\ldots+\hat{N}_{k} c_{k} x_{k} \quad(\bmod N)
$$

where n_{1}, \ldots, n_{k} are coprime integers, $N:=n_{1} \ldots n_{k}, \hat{N}_{i}:=N / n_{i}$, and the c_{i} are chosen so that $c_{i} \hat{N}_{i} \equiv 1\left(\bmod n_{i}\right)$.
Prove the following assertions:
(a) f is well-defined. That is, if y_{i} are integers such that $y_{i} \equiv x_{i}\left(\bmod n_{i}\right)$, then

$$
f\left(y_{1}, \ldots, y_{k}\right) \equiv f\left(x_{1}, \ldots, x_{k}\right) \quad(\bmod N)
$$

(b) f is invertible.
(c) $f(0, \ldots, 0) \equiv 0(\bmod N)$.
(d) $f(1, \ldots, 1) \equiv 1(\bmod N)$.
(e)

$$
f\left(x_{1}, \ldots, x_{k}\right)+f\left(y_{1}, \ldots, y_{k}\right) \equiv f\left(x_{1}+y_{1}, \ldots, x_{k}+y_{k}\right) \quad(\bmod N)
$$

(f) (Advanced topics) That:

$$
f\left(x_{1}, \ldots, x_{k}\right) \cdot f\left(y_{1}, \ldots, y_{k}\right) \equiv f\left(x_{1} \cdot y_{1}, \ldots, x_{k} \cdot y_{k}\right) \quad(\bmod N)
$$

The jargon for this is to say that $f: \mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{k} \mathbb{Z} \rightarrow \mathbb{Z} / N \mathbb{Z}$ is an isomorphism of rings (with unity).

Solution:

(a) Let us write $y_{i}=n_{i} q_{i}+x_{i}$ for some integers q_{i}. Then

$$
\begin{aligned}
f\left(y_{1}, \ldots, y_{k}\right) & =\sum_{i=1}^{k} \hat{N}_{i} c_{i}\left(n_{i} q_{i}+x_{i}\right) \\
& =\sum_{i=1}^{k} \hat{N}_{i} c_{i} n_{i} q_{i}+\sum_{i=1}^{k} \hat{N}_{i} c_{i} x_{i} \\
& =\sum_{i=1}^{k} N c_{i} q_{i}+f\left(x_{1}, \ldots, x_{k}\right) \\
& \equiv f\left(x_{1}, \ldots, x_{k}\right) \quad(\bmod N)
\end{aligned}
$$

The second last equality is from the definition of the \hat{N}_{i}. In particular we see that f is well-defined on residue classes.
(b) We claim that the inverse to f is given by the map

$$
g(y):=\left(y \bmod n_{1}, \ldots, y \bmod n_{k}\right)
$$

Observe

$$
g\left(f\left(x_{1}, \ldots, x_{k}\right)\right)=\left(\sum_{i=1}^{k} \hat{N}_{i} c_{i} x_{i} \bmod n_{1}, \ldots, \sum_{i=1}^{k} \hat{N}_{i} c_{i} x_{i} \bmod n_{k}\right)
$$

Let us examine each coordinate. We have

$$
\sum_{i=1}^{k} \hat{N}_{i} c_{i} x_{i} \equiv \hat{N}_{j} c_{j} x_{j} \equiv x_{j} \quad\left(\bmod n_{j}\right)
$$

because $n_{j} \mid \hat{N}_{i}$ if $i \neq j$, and furthermore, $\hat{N}_{j} c_{j} \equiv 1\left(\bmod n_{j}\right)$ by definition. In other words,

$$
g\left(f\left(x_{1}, \ldots, x_{k}\right)\right)=\left(x_{1}, \ldots, x_{k}\right)
$$

that is, g is an inverse to f. Therefore f is a bijection.
(c) $f(0, \ldots, 0)=\sum_{i=1}^{k} c_{i} \hat{N}_{i} \cdot 0 \equiv 0(\bmod N)$.
(d) Let use use the inverse g to f constructed before. We have

$$
g(1)=(1, \ldots, 1) .
$$

Because $g(f(1, \ldots, 1))=(1, \ldots, 1)$, we have $f(1, \ldots, 1)=1$, since inverses are injective.
(e) Note

$$
f\left(x_{1}, \ldots, x_{k}\right) \equiv \sum_{i=1}^{k} c_{i} \hat{N}_{i} \cdot x_{i}, \quad f\left(y_{1}, \ldots, y_{k}\right) \equiv \sum_{i=1}^{k} c_{i} \hat{N}_{i} \cdot y_{i}
$$

and

$$
f\left(x_{1}+y_{1}, \ldots, x_{k}+y_{k}\right) \equiv \sum_{i=1}^{k} c_{i} \hat{N}_{i} \cdot\left(x_{i}+y_{i}\right) \equiv \sum_{i=1}^{k} c_{i} \hat{N}_{i} \cdot x_{i}+\sum_{i=1}^{k} c_{i} \hat{N}_{i} \cdot y_{i} \quad(\bmod N)
$$

from which the claim follows.
5. Let p be a prime and let $f(x), g(x) \in \mathbb{Z} / p \mathbb{Z}[x]$ be nonzero polynomials modulo p. The degree of a non-zero polynomial $a_{n} x^{n}+\ldots+a_{0} \in \mathbb{Z} / p \mathbb{Z}[x]$ is the largest i such that $a_{i} \not \equiv 0(\bmod p)$. For example, if $p=7$, then

$$
\operatorname{deg}\left(7 x^{3}+5 x^{2}+1\right)=2
$$

(There are different conventions for what $\operatorname{deg}(0)$ should be.)
Prove that

$$
\operatorname{deg}(f(x) g(x))=\operatorname{deg}(f(x))+\operatorname{deg}(g(x))
$$

Is the statement still true if we do not assume p is prime?
Solution: Let $f=a_{n} x^{n}+\ldots+a_{0}$ and $g=b_{m} x^{m}+\ldots+b_{0}$ with a_{n}, b_{n} non-zero modulo p. Then

$$
f g=a_{n} b_{m} x^{n+m}+\cdots+a_{0} b_{0}
$$

Observe that $a_{n} b_{m} \not \equiv 0(\bmod p)$ because p is prime. By definition of the degree, $\operatorname{deg}(f g)=n+m=$ $\operatorname{deg}(f)+\operatorname{deg}(g)$.
The claim is not true if the modulus is not prime. Observe

$$
(2 x+1)(3 x) \equiv 6 x^{2}+3 x \equiv 3 x \quad(\bmod 6),
$$

and $\operatorname{deg}(2 x+1)=\operatorname{deg}(3 x)=1$.
6. A 3×3 grid of distinct numbers

a_{1}	a_{2}	a_{3}
a_{4}	a_{5}	a_{6}
a_{7}	a_{8}	a_{9}

is called magic if the sum of the triples of entries in the rows, columns, and two main diagonals are all equal to the same number. For example, the following is the Lo Shu magic square

$$
\begin{array}{lll}
2 & 7 & 6 \\
9 & 5 & 1 \\
4 & 3 & 8
\end{array}
$$

A magic square of squares is a magic square, where all of the entries are squares.
The notion of a magic square makes sense if we say that the entries are elements of $\mathbb{Z} / n \mathbb{Z}$. We let $n>1$ be an integer and let

$$
n=\prod_{i=1}^{k} p_{i}^{e_{i}}
$$

be its prime factorization.
(a) (Advanced topics) Prove that each entry is a square modulo n if and only if it is a square modulo each $p_{i}^{e_{i}}$.
(b) Let a, b, c be three integers. Prove that $a+b+c \equiv 0(\bmod n)$ if and only if $a+b+c \equiv 0$ $\left(\bmod p^{e_{i}}\right)$ for each prime power.

Conclude the following result:
Proposition 0.1. Prove that if there exists a magic square of squares modulo $p_{i}^{e_{i}}$ for each i, then there exists a magic square of squares modulo n.

Remark 0.2. For very silly reasons, the converse is false. Consider the following magic square modulo 10 . Reducing modulo 2 gives the following grid

0	1	0
1	1	1
0	1	0

Because the entries of a magic square are distinct, this grid is not a magic square modulo 2 . In fact, it is impossible to have a magic square modulo 2 .

Solution:

(b) By the Chinese Remainder Theorem, we have that $x \equiv 0\left(\bmod p^{e_{i}}\right)$ if and only if $x \equiv 0(\bmod n)$. Because $a+b+c$ is just a number, the result follows immediately.
Let us now address the conclusion about magic squares of squares. Denote by

$$
M_{\ell}:=\begin{array}{ccc}
x_{11}^{(\ell)} & x_{12}^{(\ell)} & x_{13}^{(\ell)} \\
x_{21}^{(\ell)} & x_{22}^{(\ell)} & x_{23}^{(\ell)} \\
x_{31}^{(\ell)} & x_{32}^{(\ell)} & x_{33}^{(\ell)}
\end{array}
$$

a given magic square of squares modulo $p_{\ell}^{e_{\ell}}$, for each $1 \leq \ell \leq k$. Let $x_{i j} \in \mathbb{Z} / n \mathbb{Z}$ be the unique element such that $x_{i j} \equiv x_{i j}^{(\ell)}\left(\bmod p_{\ell}^{e \ell}\right)$ given by the CRT. We claim that

$$
M:=\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}
$$

is a magic square of squares modulo n. From part (a), each $x_{i j}$ is a square because it is a square modulo each $p_{\ell}^{e \ell}$. The entries of M are distinct, since they are distinct modulo some $p_{\ell}^{e \ell}$. Finally, we claim that M is magic.
Because each M_{ℓ} is magic, we let s_{ℓ} be the sum of any row/column/diagonal of M_{ℓ} modulo $p_{\ell}^{e \ell}$. We then set s to be the CRT lift of $\left(s_{1}, \ldots, s_{k}\right)$. Note that for any ℓ, we have

$$
x_{11}+x_{22}+x_{33} \equiv x_{11}^{(\ell)}+x_{22}^{(\ell)}+x_{33}^{(\ell)} \equiv s_{\ell} \quad\left(\bmod p_{\ell}^{e_{\ell}}\right)
$$

thus, by the CRT, we have that

$$
x_{11}+x_{22}+x_{33} \equiv s \quad(\bmod n)
$$

Similarly, the sum of any row/column/diagonal of M is congruent to $s(\bmod n)$. Thus M is magic modulo n.

Remark 0.3. It is presently unknown whether a 3×3 magic square of squares with integer entries exists. It is also "unknown" ${ }^{1}$ whether a 3×3 magic square of squares with entries in $\mathbb{Z} / n \mathbb{Z}$ exists for all sufficiently large n. See https://www. youtube.com/watch?v=FCczHiXPVcA.

[^0]
[^0]: ${ }^{1}$ Prof. Voight and I have ideas about how to solve this

