Math 25 - Assignment 2

Due Tuesday, October 4th, beginning of class.

1. For each pair $(a, b)=(45,75),(101,42)$, express $\operatorname{gcd}(a, b)$ as an integer linear combination of a and b.

Solution: We consider the transcript of the XGCD algorithm for $(45,75)$.

q_{j}	r_{j}	$q_{j} r_{j}$	x_{j}	y_{j}
	75	-	1	0
1	45	45	0	1
1	30	15	1	-1
1	15	15	-1	2
	0			

Therefore, we see $75 \cdot(-1)+30 \cdot(2)=15=\operatorname{gcd}(75,45)$.
Similarly, we consider the transcript of the XGCD algorithm for $(101,42)$.

q_{j}	r_{j}	$q_{j} r_{j}$	x_{j}	y_{j}
	101	-	1	0
2	42	84	0	1
2	17	34	1	-2
2	8	16	-2	5
8	1	8	5	-12
	0			

Therefore, we see $101 \cdot(5)+42 \cdot(-12)=1=\operatorname{gcd}(101,42)$.
2. Let k be a positive integer. Use Bezout's identity to show that $3 k+2$ and $5 k+3$ are relatively prime (i.e., their gcd is 1).

Solution: Observe that

$$
5 \cdot(3 k+2)-3 \cdot(5 k+3)=1
$$

Thus, from Bezout's identity we see that $\operatorname{gcd}(5 k+3,3 k+2)=1$ for all integers k.
3. Let $a=\prod_{i=1}^{k} p_{i}^{a_{i}}$ and $b=\prod_{i=1}^{k} p_{i}^{b_{i}}$ be prime factorizations where $a_{i}, b_{i} \geq 0$ (as opposed to ≥ 1 this lets us use a common base p_{1}, \ldots, p_{k} of primes). Express the prime factorization of $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$ in terms of the prime factorizations above. (Prove your formula holds of course.)
Solution: We claim that

$$
\operatorname{gcd}(a, b)=\prod_{i=1}^{k} p_{i}^{\min \left(a_{i}, b_{i}\right)}, \quad \operatorname{lcm}(a, b)=\prod_{i=1}^{k} p_{i}^{\max \left(a_{i}, b_{i}\right)}
$$

We prove the first equality. Let q be a prime and let q^{e} be the largest power of q dividing $\operatorname{gcd}(a, b)$. Then $p^{e} \mid a$ and $p^{e} \mid b$. We may assume $e>0$, since otherwise $q^{e}=1$ and there is nothing to do.
Since q divides a, we have that q divides one of the primes p_{i} for some unique i, (the p_{i} are distinct primes). Thus $q=p_{i}$ (because these are primes). Then

$$
q^{e} \mid p^{a_{i}} \Longleftrightarrow e \leq a_{i}
$$

Similarly, $q^{e} \mid b$, so $e \leq b_{i}$ (we had ensured a common base of primes at the outset). Therefore $e \leq \min \left(a_{i}, b_{i}\right)$. Conversely, if $q=p_{i}$ and $e \leq \min \left(a_{i}, b_{i}\right)$, then $q^{e} \mid a$ and $q^{e} \mid b$.
If d is a common divisor of both a and b, then any prime dividing d must be one of the p_{i}. We write the unique factorization of d as

$$
d=\prod_{i=1}^{k} p_{i}^{e_{i}}
$$

where $e_{i} \geq 0$. The prior argument shows that $e_{i} \leq \min \left(a_{i}, b_{i}\right)$, and that any such choice of exponents begets a common divisor of a and b. The largest common divisor of a and b one can construct is with the choice $e_{i}=\min \left(a_{i}, b_{i}\right)$, so

$$
\operatorname{gcd}(a, b)=\prod_{i=1}^{k} p_{i}^{\min \left(a_{i}, b_{i}\right)}
$$

We now examine the least common multiple $m=\operatorname{lcm}(a, b)$. We can use the identity

$$
a b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)
$$

(This is Theorem 1.12 from the book. One can do things in the other order - first establish the prime factorization of the lcm , and then prove this identity. See below.)
Because $\max (x, y)+\min (x, y)=x+y$, we see that

$$
\operatorname{lcm}(a, b)=\frac{a b}{\operatorname{gcd}(a, b)}=\prod_{i=1}^{k} p_{i}^{a_{i}+b_{i}-\min \left(a_{i}, b_{i}\right)}=\prod_{i=1}^{k} p_{i}^{\max \left(a_{i}, b_{i}\right)}
$$

This proves the claim.

For the interested student, we prove Theorem 1.12 via prime factorizations. Let $m=\operatorname{lcm}(a, b)$ and write as its prime factorization

$$
m=\prod_{i=1}^{k} p_{i}^{e_{i}} \cdot \lambda
$$

where $\lambda \in \mathbb{Z}$ is coprime to the p_{i}. Since $a \mid m$, we have that $p_{i}^{a_{i}}$ divides $p_{i}^{e_{i}}$ as before, or in other words $a_{i} \leq e_{i}$. Similarly, $b_{i} \leq e_{i}$. Thus $\max \left(a_{i}, b_{i}\right) \leq e_{i}$. We then need only show that

$$
\prod_{i=1}^{k} p_{i}^{\max \left(a_{i}, b_{i}\right)}
$$

is a common multiple of a and b, whence minimality follows. But of course

$$
\prod_{i=1}^{k} p_{i}^{\max \left(a_{i}, b_{i}\right)}=a \cdot \prod_{i=1}^{k} p_{i}^{\max \left(a_{i}, b_{i}\right)-a_{i}}=b \cdot \prod_{i=1}^{k} p_{i}^{\max \left(a_{i}, b_{i}\right)-b_{i}}
$$

(the exponents necessarily being non-negative) so indeed this is the case.
4. (Euclid's Lemma) Let a, b, d be integers. Prove that if $d \mid a b$ and $\operatorname{gcd}(d, a)=1$, then $d \mid b$. (Hint: Bezout's identity gives that

$$
a x+d y=1
$$

for some integers x, y.)
Solution: From Bezout's lemma we have that $a x+d y=1$ for some $x, y \in \mathbb{Z}$. Now

$$
a b x+d b y=b .
$$

Because $d \mid a b$ and $d \mid d$, we have $d \mid b$.

