
Math 25 — Assignment 2

Due Tuesday, October 4th, beginning of class.

1. For each pair (a, b) = (45, 75), (101, 42), express gcd(a, b) as an integer linear combination of a and b.

Solution: We consider the transcript of the XGCD algorithm for (45, 75).

qj rj qjrj xj yj
75 — 1 0

1 45 45 0 1
1 30 15 1 -1
1 15 15 -1 2

0

Therefore, we see 75 · (−1) + 30 · (2) = 15 = gcd(75, 45).

Similarly, we consider the transcript of the XGCD algorithm for (101, 42).

qj rj qjrj xj yj
101 — 1 0

2 42 84 0 1
2 17 34 1 -2
2 8 16 -2 5
8 1 8 5 -12

0

Therefore, we see 101 · (5) + 42 · (−12) = 1 = gcd(101, 42).

2. Let k be a positive integer. Use Bezout’s identity to show that 3k + 2 and 5k + 3 are relatively prime
(i.e., their gcd is 1).

Solution: Observe that
5 · (3k + 2)− 3 · (5k + 3) = 1.

Thus, from Bezout’s identity we see that gcd(5k + 3, 3k + 2) = 1 for all integers k.

3. Let a =
∏k

i=1 p
ai
i and b =

∏k
i=1 p

bi
i be prime factorizations where ai, bi ≥ 0 (as opposed to ≥ 1 –

this lets us use a common base p1, . . . , pk of primes). Express the prime factorization of gcd(a, b) and
lcm(a, b) in terms of the prime factorizations above. (Prove your formula holds of course.)

Solution: We claim that

gcd(a, b) =

k∏
i=1

p
min(ai,bi)
i , lcm(a, b) =

k∏
i=1

p
max(ai,bi)
i .

We prove the first equality. Let q be a prime and let qe be the largest power of q dividing gcd(a, b).
Then pe | a and pe | b. We may assume e > 0, since otherwise qe = 1 and there is nothing to do.

Since q divides a, we have that q divides one of the primes pi for some unique i, (the pi are distinct
primes). Thus q = pi (because these are primes). Then

qe | pai ⇐⇒ e ≤ ai.
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Similarly, qe | b, so e ≤ bi (we had ensured a common base of primes at the outset). Therefore
e ≤ min(ai, bi). Conversely, if q = pi and e ≤ min(ai, bi), then qe | a and qe | b.
If d is a common divisor of both a and b, then any prime dividing d must be one of the pi. We write the
unique factorization of d as

d =

k∏
i=1

peii

where ei ≥ 0. The prior argument shows that ei ≤ min(ai, bi), and that any such choice of exponents
begets a common divisor of a and b. The largest common divisor of a and b one can construct is with
the choice ei = min(ai, bi), so

gcd(a, b) =

k∏
i=1

p
min(ai,bi)
i .

We now examine the least common multiple m = lcm(a, b). We can use the identity

ab = gcd(a, b) · lcm(a, b).

(This is Theorem 1.12 from the book. One can do things in the other order – first establish the prime
factorization of the lcm, and then prove this identity. See below.)

Because max(x, y) + min(x, y) = x+ y, we see that

lcm(a, b) =
ab

gcd(a, b)
=

k∏
i=1

p
ai+bi−min(ai,bi)
i =

k∏
i=1

p
max(ai,bi)
i .

This proves the claim.

For the interested student, we prove Theorem 1.12 via prime factorizations. Let m = lcm(a, b) and
write as its prime factorization

m =

k∏
i=1

peii · λ

where λ ∈ Z is coprime to the pi. Since a | m, we have that pai
i divides peii as before, or in other words

ai ≤ ei. Similarly, bi ≤ ei. Thus max(ai, bi) ≤ ei. We then need only show that

k∏
i=1

p
max(ai,bi)
i

is a common multiple of a and b, whence minimality follows. But of course

k∏
i=1

p
max(ai,bi)
i = a ·

k∏
i=1

p
max(ai,bi)−ai

i = b ·
k∏

i=1

p
max(ai,bi)−bi
i

(the exponents necessarily being non-negative) so indeed this is the case.

4. (Euclid’s Lemma) Let a, b, d be integers. Prove that if d | ab and gcd(d, a) = 1, then d | b. (Hint:
Bezout’s identity gives that

ax+ dy = 1

for some integers x, y.)

Solution: From Bezout’s lemma we have that ax+ dy = 1 for some x, y ∈ Z. Now

abx+ dby = b.

Because d | ab and d | d, we have d | b.
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