Math 25 — Assignment 2

Due Tuesday, October 4th, beginning of class.

1. For each pair (a, b) = (45,75), (101, 42), express gcd(a, b) as an integer linear combination of a and b.
Solution: We consider the transcript of the XGCD algorithm for (45, 75).

G i 4T T Y
75— 1 0
1 45 45
1 30 15 1 -1
115 15 -1
0

Therefore, we see 75 - (—1) + 30 - (2) = 15 = ged(75,45).
Similarly, we consider the transcript of the XGCD algorithm for (101, 42).

4G T 4T T Y

101 —
2 42 84 0 1
2 17 34 1 -2
2
8

—
=)

8 16 -2 5
1 8 5 -12
0

Therefore, we see 101 - (5) +42 - (—12) = 1 = ged(101, 42).
2. Let k be a positive integer. Use Bezout’s identity to show that 3k + 2 and 5k + 3 are relatively prime
(i.e., their ged is 1).
Solution: Observe that
5-(3k+2)—3-(5k+3)=1.
Thus, from Bezout’s identity we see that ged(5k + 3, 3k + 2) = 1 for all integers k.
3. Leta = Hle pitand b = Hle pLi be prime factorizations where a;,b; > 0 (as opposed to > 1 —

this lets us use a common base p1, . . ., pg of primes). Express the prime factorization of gcd(a, b) and
lem(a, b) in terms of the prime factorizations above. (Prove your formula holds of course.)

Solution: We claim that

k

k
min(a;,b; max(a;,b;
ged(a,b) = I |pi (as,6) lem(a, b) = Hpi (@iba),
i=1 i=1

We prove the first equality. Let ¢ be a prime and let ¢° be the largest power of ¢ dividing ged(a, b).
Then p° | a and p°® | b. We may assume e > 0, since otherwise ¢¢ = 1 and there is nothing to do.
Since ¢ divides a, we have that ¢ divides one of the primes p; for some unique ¢, (the p; are distinct
primes). Thus ¢ = p; (because these are primes). Then

q¢° | p" = e<a.



Similarly, ¢° | b, so e < b; (we had ensured a common base of primes at the outset). Therefore
e < min(a;, b;). Conversely, if ¢ = p; and e < min(a;, b;), then ¢° | a and ¢© | b.

If d is a common divisor of both a and b, then any prime dividing d must be one of the p;. We write the
unique factorization of d as
k
d= H Py
i=1

where e; > 0. The prior argument shows that e; < min(a;, b;), and that any such choice of exponents
begets a common divisor of a and b. The largest common divisor of a and b one can construct is with
the choice e; = min(ay, b;), so

k
ged(a,b) = pr‘m(“"’bi).
i=1

We now examine the least common multiple m = lcm(a, b). We can use the identity
ab = ged(a, b) - lem(a, b).

(This is Theorem 1.12 from the book. One can do things in the other order — first establish the prime
factorization of the lcm, and then prove this identity. See below.)

Because max(z,y) + min(z,y) = = + y, we see that

k k

ab a;+b; —min(a;,b;) max(a;,b;)

lem(a,b) = ——~=||p," =1 p
0= etan) ~ 11 1l

This proves the claim.

For the interested student, we prove Theorem 1.12 via prime factorizations. Let m = lcm(a, b) and
write as its prime factorization

k
m:pri A
i=1

where A € Z is coprime to the p;. Since a | m, we have that p;* divides p;’ as before, or in other words
a; < e;. Similarly, b; < e;. Thus max(a;, b;) < e;. We then need only show that

k
max(a;,b;)
[1»
=1

is a common multiple of a and b, whence minimality follows. But of course

k k k
max(a;,bi) _ max(a;,b;)—a; max(a;,b;)—bs
Hpi —a-Hpi _b'sz’
=1 i=1 i=1

(the exponents necessarily being non-negative) so indeed this is the case.

. (Euclid’s Lemma) Let a, b, d be integers. Prove that if d | ab and ged(d,a) = 1, then d | b. (Hint:
Bezout’s identity gives that
ax +dy =1

for some integers x, y.)

Solution: From Bezout’s lemma we have that az 4+ dy = 1 for some =,y € Z. Now
abzx + dby = b.

Because d | ab and d | d, we have d | b.



