Math 25 - Assignment 1 (Solutions)

Due Tuesday, September 27, beginning of class.

1. Prove that:
(a) If $a \mid b$ and $b \mid c$ then $a \mid c$.
(b) If $a \mid b$ and $c \mid d$ then $a c \mid b d$.
(c) If $m \neq 0$ then $a \mid b$ if and only if $m a \mid m b$.
(d) If $d \mid a$ and $a \neq 0$ then $|d| \leq|a|$.

Solution: In the following we shall denote by x, y the appropriate integers used in the definition of divisibility.
(a) Write $b=x a$ and $c=y b$. Then $c=x y a$, so $a \mid c$.
(b) Write $b=x a$ and $d=y c$. Then $b d=x y \cdot a c$, so $a c \mid b d$.
(c) Notice that for $m \neq 0$, we have $b=x a$ iff $m b=m x a$. Thus the claim.
(d) (This was done in class.) Write $a=x d$. Since $a \neq 0$, we have $d \neq 0$. We have $|x| \geq 1$ for all $x \in \mathbb{Z}$, so $|a|=|x| \cdot|d| \geq|d|$.
2. Let a, b, e be positive integers. If $e \mid a$ and $e \mid b$, prove that $e \mid \operatorname{gcd}(a, b)$.

Solution:

From Bezout's identity, there exist integers x, y such that

$$
a x+b y=\operatorname{gcd}(a, b)
$$

Because e is a common divisor of a, b, it follows from Theorem 1.3 of the book that $e \mid \operatorname{gcd}(a, b)$. (That is, e divides any integer linear combination of a and b.)
3. Let a, b be integers with $b>0$. Prove that there exist unique integers q, r such that

$$
a=q b+r
$$

where $-\frac{b}{2}<r \leq \frac{b}{2}$. Additionally, prove that there exist unique integers q, r such that

$$
a=q b+r
$$

where $-b<r \leq 0$.

Solution:

Set $\beta:=\lceil b / 2\rceil-1$. Note $-\frac{b}{2}<-\beta$ and $b-\beta \leq \frac{b}{2}$. From the Division Algorithm, there are unique integers q, r^{\prime} such that

$$
(a+\beta)=q b+r^{\prime}
$$

and $0 \leq r^{\prime}<b$. Thus, given any integer a, there are unique integers q, r^{\prime} such that

$$
a=q b+\left(r^{\prime}-\beta\right) .
$$

Set $r=r^{\prime}-\beta$. We have that $\frac{b}{2}<r \leq \frac{b}{2}$. It is clearly the unique remainder in this range, since subtraction-by- β is a bijection on \mathbb{Z} which sends $\{0, \ldots, b-1\}$ to $\left\{x \in \mathbb{Z}: \frac{b}{2}<x \leq \frac{b}{2}\right\}$.

Similarly, from the division algorithm, there are unique integers $x, r^{\prime \prime}$ such that

$$
(a+b-1)=x b+r^{\prime \prime}
$$

So

$$
a=x b+\left(r^{\prime \prime}-b+1\right)
$$

Setting $r=r^{\prime \prime}-b+1$, we have $-b<r \leq 0$. As before we see r is the unique with regard to this property.
4. Given an element $\alpha=\frac{c}{d} \in \mathbb{Q}$, we can write the Hirzebruch-Jung continued fraction expansion as

$$
\alpha=a_{0}-\frac{1}{a_{1}-\frac{1}{a_{2}-\frac{1}{\ddots-\frac{1}{a_{k}}}}}
$$

for some unique finite list of integers $a_{0}, a_{1}, \ldots, a_{k}$ such that $a_{j}>1$ for each $1 \leq j \leq k$. (In the case $\alpha \in \mathbb{Z}$, we set the continued fraction expansion to be $\alpha=a_{0}$.)
(a) Explain how to compute a_{0}. (Hint: $\left|\alpha-a_{0}\right|<1$. See part (d).)
(b) Explain how to compute the sequence a_{0}, \ldots, a_{k}. Comment briefly on how this is related to the Euclidian algorithm.
(c) Prove for all $n>1$ that

$$
\frac{n+1}{n}=2-\frac{1}{2-\frac{1}{2-\frac{1}{\ddots \cdot-\frac{1}{2}}}}
$$

for some number of 2 's.
(d) (Advanced topics ${ }^{1}$) Prove that $\left|\alpha-a_{0}\right|<1$ in any Hirzebruch-Jung continued fraction expression. Use this to prove that the Hirzebruch-Jung continued fraction expansion is unique, provided it exists.

Solution:

(a) We claim that a_{0} must be the minimal element of $\{d \in \mathbb{Z}: \alpha \leq d\}$. From part (d) we have $\left|\alpha-a_{0}\right|<1$ for any valid a_{0}. Notice that the interval $(\alpha-1, \alpha+1)$ is of length 2 , so:

- either $\alpha \notin \mathbb{Z}$ and there are two integers x, y in this interval, which must satisfy $x<\alpha<y$, or,
- $\alpha \in \mathbb{Z}$, in which case α is the unique integer in $(\alpha-1, \alpha+1)$.

In the second case, we have that $\alpha=a_{0}$ by definition.
Otherwise, we are in the first case. We rule out $a_{0}=x$ via contradiction. Were this the case, then

$$
0>\frac{1}{a_{0}-\alpha}=\frac{1}{x-\alpha}=a_{1}-\frac{1}{a_{2}-\frac{1}{\ddots-\frac{1}{a_{k}}}}
$$

We write the rightmost quantity as $a_{1}-\epsilon$, which by part (d) satisfies $|\epsilon|<1$. From the properties of Hirzebruch-Jung continued fractions, we see $a_{1}>1$. Thus $a_{1}-\epsilon>a_{1}-1>0$, a contradiction. Thus, as in the second case, we have that a_{0} is equal to the smallest integer not smaller than α.

[^0](b) From part (a), and the fact that the Hirzebruch-Jung continued fraction expansion is unique, we can compute the sequence recursively using the Euclidian algorithm.
Write $\alpha=\frac{p_{0}}{q_{0}}$ in lowest terms. By Question 2, we can compute a_{0}, r_{0} such that
$$
p_{0}=a_{0} \cdot q_{0}-r_{0}
$$
where $0 \leq r_{0}<q_{0}$. Note from this equation that a_{0} is the smallest integer such that $\alpha \leq a_{0}$, as $\frac{r_{0}}{q_{0}}<1$. If $r_{0}=0$ we stop, and otherwise
$$
\alpha=a_{0}-\frac{1}{\left(q_{0} / r_{0}\right)}
$$

We then compute the Hirzebruch-Jung continued fraction expansion of $\alpha_{1}:=q_{0} / r_{0}$. Note that this algorithm terminates, since the Euclidian algorithm terminates in a finite number of steps (alternatively, since it is given that the continued fraction expansion has finite length).
(c) We prove the claim by induction. For $n=2$ we see that $\frac{3}{2}=2-\frac{1}{2}$. We assume that the result is true for some $n \geq 2$, and show this implies the result for $n+1$.
Observe that $\frac{n+1}{n}=1+\frac{1}{n}$, which lies in $(1,2)$. Thus, we compute a_{0} using part (a) to see that $a_{0}=2$. Now

$$
\frac{n+1}{n}=2-\frac{1}{\left(\frac{n}{n-1}\right)}
$$

The Hirzebruch-Jung continued fraction expansion for $\frac{n}{n-1}$ can be substituted into this expression, giving by the induction hypothesis

$$
\frac{n+1}{n}=2-\frac{1}{2-\frac{1}{2-\frac{1}{2-\frac{1}{\ddots-\frac{1}{2}}}}}
$$

This is of course a valid Hirzebruch-Jung continued fraction. Thus, by induction the result is proven for all n.
5. A square-free integer is an integer n such that $m^{2} \mid n$ implies $n=1$. That is, the only square dividing n is 1 . Prove that every non-zero integer n can be written uniquely as a product $n=a b^{2}$ with a a square-free integer.
Solution: Let

$$
n=(-1)^{s} \cdot \prod_{i=1}^{k} p_{i}^{e_{i}}
$$

be the unique factorization of n. Let $E:=\left\{i: 2 \mid e_{i}, 1 \leq i \leq k\right\}$ and let $N:=\{1, \ldots, k\} \backslash E$. Then

$$
\begin{aligned}
n=(-1)^{s} \cdot \prod_{i \in E} p_{i}^{e_{i}} \cdot \prod_{i \in N} p_{i}^{e_{i}} & =(-1)^{s} \cdot \prod_{i \in E} p_{i}^{e_{i}} \cdot \prod_{i \in N} p_{i} \cdot \prod_{i \in N} p_{i}^{e_{i}-1} \\
& =(-1)^{s} \cdot \prod_{i \in N} p_{i} \cdot\left(\prod_{i \in E} p_{i}^{e_{i}} \cdot \prod_{i \in N} p_{i}^{e_{i}-1}\right) \\
& =(-1)^{s} \cdot \prod_{i \in N} p_{i} \cdot\left(\prod_{i \in E} p_{i}^{\frac{e_{i}}{2}} \cdot \prod_{i \in N} p_{i}^{\frac{e_{i}-1}{2}}\right)^{2}
\end{aligned}
$$

By definition of E and N, the exponents of the bracketed term are integers, so in particular the bracketed term is itself an integer. We set

$$
a:=(-1)^{s} \cdot \prod_{i \in N} p_{i}, \quad b:=\left(\prod_{i \in E} p_{i}^{\frac{e_{i}}{2}} \cdot \prod_{i \in N} p_{i}^{\frac{e_{i}-1}{2}}\right) .
$$

Note that a is squarefree. (If p is a prime and $p \mid m^{2}$, then $p \mid m$, so $p^{2} \mid m^{2}$. Unique factorization shows that the only square dividing a is 1.) Thus we have produced a squarefree factorization.
We now prove uniqueness. Let $n=a b^{2}=c d^{2}$ be two squarefree factorizations, with a, b as before. Then

$$
a c b^{2}=(c d)^{2} \Longrightarrow a c=\left(\frac{c d}{b}\right)^{2} \in \mathbb{Z}
$$

so $a c$ is a square. It is in particular positive, and the unique factorization has even exponents for each prime. In particular each prime dividing a must also divide c, so $a \mid c$.

Write $c=q a$. Since $a c=q a^{2}$ is a square, we have that q is a square. But c is squarefree, so $q=1$ and $a=c$. This implies $b=d$, and thus that the squarefree factorization is unique.
6. (Advanced topics) Let $f(x)$ be a polynomial with non-negative integer coefficients. Classify all such f such that $f(n)$ is prime for all $n \in \mathbb{N}$.
7. (Advanced topics) Use the Prime Number Theorem and a bit of calculus to prove the following weaker form of Bertrand's Postulate:

Proposition. There are only finitely many $n \in \mathbb{N}$ such that the interval $[n, 2 n]$ does not contain a prime number.

[^0]: ${ }^{1}$ Advanced topics questions are not counted towards the score, but I will offer feedback on your solution. They are meant to be a challenge.

