
Math 25 — Assignment 1 (Solutions)

Due Tuesday, September 27, beginning of class.

1. Prove that:

(a) If a | b and b | c then a | c.
(b) If a | b and c | d then ac | bd.

(c) If m 6= 0 then a | b if and only if ma | mb.
(d) If d | a and a 6= 0 then |d| ≤ |a|.

Solution: In the following we shall denote by x, y the appropriate integers used in the definition of
divisibility.

(a) Write b = xa and c = yb. Then c = xya, so a | c.
(b) Write b = xa and d = yc. Then bd = xy · ac, so ac | bd.

(c) Notice that for m 6= 0, we have b = xa iff mb = mxa. Thus the claim.

(d) (This was done in class.) Write a = xd. Since a 6= 0, we have d 6= 0. We have |x| ≥ 1 for all
x ∈ Z, so |a| = |x| · |d| ≥ |d|.

2. Let a, b, e be positive integers. If e | a and e | b, prove that e | gcd(a, b).
Solution:
From Bezout’s identity, there exist integers x, y such that

ax+ by = gcd(a, b).

Because e is a common divisor of a, b, it follows from Theorem 1.3 of the book that e | gcd(a, b).
(That is, e divides any integer linear combination of a and b.)

3. Let a, b be integers with b > 0. Prove that there exist unique integers q, r such that

a = qb+ r

where − b
2 < r ≤ b

2 . Additionally, prove that there exist unique integers q, r such that

a = qb+ r

where −b < r ≤ 0.

Solution:
Set β := db/2e − 1. Note − b

2 < −β and b − β ≤ b
2 . From the Division Algorithm, there are unique

integers q, r′ such that
(a+ β) = qb+ r′

and 0 ≤ r′ < b. Thus, given any integer a, there are unique integers q, r′ such that

a = qb+ (r′ − β).

Set r = r′ − β. We have that b
2 < r ≤ b

2 . It is clearly the unique remainder in this range, since
subtraction-by-β is a bijection on Z which sends {0, . . . , b− 1} to {x ∈ Z : b

2 < x ≤ b
2}.
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Similarly, from the division algorithm, there are unique integers x, r′′ such that

(a+ b− 1) = xb+ r′′.

So
a = xb+ (r′′ − b+ 1).

Setting r = r′′ − b + 1, we have −b < r ≤ 0. As before we see r is the unique with regard to this
property.

4. Given an element α = c
d ∈ Q, we can write the Hirzebruch-Jung continued fraction expansion as

α = a0 −
1

a1 −
1

a2 −
1

. . . −
1

ak

for some unique finite list of integers a0, a1, . . . , ak such that aj > 1 for each 1 ≤ j ≤ k. (In the case
α ∈ Z, we set the continued fraction expansion to be α = a0.)

(a) Explain how to compute a0. (Hint: |α− a0| < 1. See part (d).)

(b) Explain how to compute the sequence a0, . . . , ak. Comment briefly on how this is related to the
Euclidian algorithm.

(c) Prove for all n > 1 that
n+ 1

n
= 2−

1

2−
1

2−
1

. . . −
1

2

for some number of 2’s.

(d) (Advanced topics1) Prove that |α−a0| < 1 in any Hirzebruch-Jung continued fraction expression.
Use this to prove that the Hirzebruch-Jung continued fraction expansion is unique, provided it
exists.

Solution:

(a) We claim that a0 must be the minimal element of {d ∈ Z : α ≤ d}. From part (d) we have
|α− a0| < 1 for any valid a0. Notice that the interval (α− 1, α+ 1) is of length 2, so:

• either α /∈ Z and there are two integers x, y in this interval, which must satisfy x < α < y, or,
• α ∈ Z, in which case α is the unique integer in (α− 1, α+ 1).

In the second case, we have that α = a0 by definition.
Otherwise, we are in the first case. We rule out a0 = x via contradiction. Were this the case, then

0 >
1

a0 − α
=

1

x− α
= a1 −

1

a2 −
1

. . . −
1

ak

.

We write the rightmost quantity as a1 − ε, which by part (d) satisfies |ε| < 1. From the properties
of Hirzebruch-Jung continued fractions, we see a1 > 1. Thus a1−ε > a1−1 > 0, a contradiction.
Thus, as in the second case, we have that a0 is equal to the smallest integer not smaller than α.

1Advanced topics questions are not counted towards the score, but I will offer feedback on your solution. They are meant to be a
challenge.
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(b) From part (a), and the fact that the Hirzebruch-Jung continued fraction expansion is unique, we
can compute the sequence recursively using the Euclidian algorithm.
Write α = p0

q0
in lowest terms. By Question 2, we can compute a0, r0 such that

p0 = a0 · q0 − r0

where 0 ≤ r0 < q0. Note from this equation that a0 is the smallest integer such that α ≤ a0, as
r0
q0
< 1. If r0 = 0 we stop, and otherwise

α = a0 −
1

(q0/r0)
.

We then compute the Hirzebruch-Jung continued fraction expansion of α1 := q0/r0. Note that
this algorithm terminates, since the Euclidian algorithm terminates in a finite number of steps
(alternatively, since it is given that the continued fraction expansion has finite length).

(c) We prove the claim by induction. For n = 2 we see that 3
2 = 2 − 1

2 . We assume that the result is
true for some n ≥ 2, and show this implies the result for n+ 1.
Observe that n+1

n = 1 + 1
n , which lies in (1, 2). Thus, we compute a0 using part (a) to see that

a0 = 2. Now
n+ 1

n
= 2− 1(

n
n−1

) .
The Hirzebruch-Jung continued fraction expansion for n

n−1 can be substituted into this expression,
giving by the induction hypothesis

n+ 1

n
= 2−

1

2−
1

2−
1

2−
1

. . . −
1

2

.

This is of course a valid Hirzebruch-Jung continued fraction. Thus, by induction the result is
proven for all n.

5. A square-free integer is an integer n such that m2 | n implies n = 1. That is, the only square dividing
n is 1. Prove that every non-zero integer n can be written uniquely as a product n = ab2 with a a
square-free integer.

Solution: Let

n = (−1)s ·
k∏

i=1

peii

be the unique factorization of n. Let E := {i : 2 | ei, 1 ≤ i ≤ k} and let N := {1, . . . , k}\E. Then

n = (−1)s ·
∏
i∈E

peii ·
∏
i∈N

peii = (−1)s ·
∏
i∈E

peii ·
∏
i∈N

pi ·
∏
i∈N

pei−1i

= (−1)s ·
∏
i∈N

pi ·

(∏
i∈E

peii ·
∏
i∈N

pei−1i

)

= (−1)s ·
∏
i∈N

pi ·

(∏
i∈E

p
ei
2
i ·

∏
i∈N

p
ei−1

2
i

)2

.
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By definition of E and N , the exponents of the bracketed term are integers, so in particular the brack-
eted term is itself an integer. We set

a := (−1)s ·
∏
i∈N

pi, b :=

(∏
i∈E

p
ei
2
i ·

∏
i∈N

p
ei−1

2
i

)
.

Note that a is squarefree. (If p is a prime and p|m2, then p|m, so p2|m2. Unique factorization shows
that the only square dividing a is 1.) Thus we have produced a squarefree factorization.

We now prove uniqueness. Let n = ab2 = cd2 be two squarefree factorizations, with a, b as before.
Then

acb2 = (cd)2 =⇒ ac =

(
cd

b

)2

∈ Z,

so ac is a square. It is in particular positive, and the unique factorization has even exponents for each
prime. In particular each prime dividing a must also divide c, so a|c.
Write c = qa. Since ac = qa2 is a square, we have that q is a square. But c is squarefree, so q = 1 and
a = c. This implies b = d, and thus that the squarefree factorization is unique.

6. (Advanced topics) Let f(x) be a polynomial with non-negative integer coefficients. Classify all such
f such that f(n) is prime for all n ∈ N.

7. (Advanced topics) Use the Prime Number Theorem and a bit of calculus to prove the following weaker
form of Bertrand’s Postulate:

Proposition. There are only finitely many n ∈ N such that the interval [n, 2n] does not contain a prime
number.
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