Math 25 — Assignment 1 (Solutions)

Due Tuesday, September 27, beginning of class.
1. Prove that:

(@) Ifa|band b | cthena | c.
(b) If a | band ¢ | d then ac | bd.
(c) If m # O then @ | b if and only if ma | mb.
(d) Ifd | aand a # 0 then |d| < |al.
Solution: In the following we shall denote by z, y the appropriate integers used in the definition of
divisibility.
(a) Write b = za and ¢ = yb. Then ¢ = zya, so a | c.
(b) Write b = za and d = yc. Then bd = zy - ac, so ac | bd.
(c) Notice that for m # 0, we have b = za iff mb = mxa. Thus the claim.
(d) (This was done in class.) Write a = zd. Since a # 0, we have d # 0. We have |z| > 1 for all
x € Z,s0 |a| = |z| - |d| > |d|.
2. Let a, b, e be positive integers. If e | @ and e | b, prove that e | gcd(a, b).
Solution:

From Bezout’s identity, there exist integers x, y such that
ax + by = ged(a, b).

Because e is a common divisor of a, b, it follows from Theorem 1.3 of the book that e | ged(a, b).
(That is, e divides any integer linear combination of a and b.)

3. Let a, b be integers with b > 0. Prove that there exist unique integers g, r such that
a=qgb+r
where —g <r< g Additionally, prove that there exist unique integers g, r such that
a=qgb+r
where —b < r <0.

Solution:

Set 8 := [b/2] — 1. Note —g < —fandb—- B < g From the Division Algorithm, there are unique
integers ¢, r’ such that
(a+p)=qb+1'

and 0 < r/ < b. Thus, given any integer a, there are unique integers ¢, 7’ such that

a=qgb+ (r' - B).

Set r = r’ — 3. We have that g <r < %. It is clearly the unique remainder in this range, since

subtraction-by-43 is a bijection on Z which sends {0,...,b— 1} to{z € Z: & <2 < 2}.



Similarly, from the division algorithm, there are unique integers x, r” such that
(a+b—1)=ab+1r".

So
a=xb+ (r" —b+1).

Setting r = 7/ — b+ 1, we have —b < r < 0. As before we see r is the unique with regard to this
property.

4. Given an element o = £ € QQ, we can write the Hirzebruch-Jung continued fraction expansion as

1
a=ay— .
ai — N
as — i
o
for some unique finite list of integers ag, a1, ..., ax such that a; > 1 foreach 1 < j < k. (In the case

a € 7, we set the continued fraction expansion to be o = ag.)

(a) Explain how to compute ag. (Hint: |o — ag| < 1. See part (d).)

(b) Explain how to compute the sequence ag, ..., ar. Comment briefly on how this is related to the
Euclidian algorithm.

(c) Prove for all n > 1 that
1
n+1 _9_
n 1

for some number of 2’s.

(d) (Advanced topics') Prove that |« — ag| < 1 in any Hirzebruch-Jung continued fraction expression.
Use this to prove that the Hirzebruch-Jung continued fraction expansion is unique, provided it
exists.

Solution:

(a) We claim that ap must be the minimal element of {d € Z : « < d}. From part (d) we have
|ae — ag| < 1 for any valid ag. Notice that the interval (o — 1, & + 1) is of length 2, so:
e cither o ¢ Z and there are two integers x, y in this interval, which must satisfy © < « < y, or,
e « € Z, in which case « is the unique integer in (o — 1, + 1).
In the second case, we have that o = ag by definition.
Otherwise, we are in the first case. We rule out ag = z via contradiction. Were this the case, then
0> ! = 1 =a1 — 1

ag — « r— 1
ag —

ag

We write the rightmost quantity as a; — €, which by part (d) satisfies |e| < 1. From the properties
of Hirzebruch-Jung continued fractions, we see a; > 1. Thus a; —e > a; —1 > 0, a contradiction.

Thus, as in the second case, we have that ag is equal to the smallest integer not smaller than a.

! Advanced topics questions are not counted towards the score, but I will offer feedback on your solution. They are meant to be a
challenge.



(b) From part (a), and the fact that the Hirzebruch-Jung continued fraction expansion is unique, we
can compute the sequence recursively using the Euclidian algorithm.

Write o = z—g in lowest terms. By Question 2, we can compute ag, 7o such that
Po=0ao-qo —To

where 0 < rg < go. Note from this equation that ag is the smallest integer such that o < ay, as
Z—S < 1. If rg = 0 we stop, and otherwise

1
a=ay)— —F.
(q0/70)
We then compute the Hirzebruch-Jung continued fraction expansion of « := ¢g/r9. Note that

this algorithm terminates, since the Euclidian algorithm terminates in a finite number of steps
(alternatively, since it is given that the continued fraction expansion has finite length).

(c) We prove the claim by induction. For n = 2 we see that % =2 % We assume that the result is
true for some n > 2, and show this implies the result for n + 1.

Observe that 1 = 1 + L, which lies in (1,2). Thus, we compute a, using part (a) to see that

ag = 2. Now
n+172 1

)

The Hirzebruch-Jung continued fraction expansion for "+ can be substituted into this expression,
giving by the induction hypothesis

1 1
ntl o .
n 1

This is of course a valid Hirzebruch-Jung continued fraction. Thus, by induction the result is
proven for all n.

5. A square-free integer is an integer n such that m? | n implies n = 1. That is, the only square dividing
n is 1. Prove that every non-zero integer n can be written uniquely as a product n = ab? with a a
square-free integer.

Solution: Let i
n=(-1)°]]pf
i=1

be the unique factorization of n. Let £ := {i : 2| e;,1 <i < k}andlet N := {1,...,k}\E. Then
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By definition of E and N, the exponents of the bracketed term are integers, so in particular the brack-
eted term is itself an integer. We set

i€EN i€l iEN

Note that a is squarefree. (If p is a prime and p|m?, then p|m, so p?|m?. Unique factorization shows
that the only square dividing a is 1.) Thus we have produced a squarefree factorization.

We now prove uniqueness. Let n = ab? = cd? be two squarefree factorizations, with a, b as before.
Then

2
ach® = (cd)? = ac= (de) €z,

so ac is a square. It is in particular positive, and the unique factorization has even exponents for each
prime. In particular each prime dividing a must also divide ¢, so alc.

Write ¢ = ga. Since ac = ga? is a square, we have that g is a square. But c is squarefree, so ¢ = 1 and
a = c. This implies b = d, and thus that the squarefree factorization is unique.

. (Advanced topics) Let f(z) be a polynomial with non-negative integer coefficients. Classify all such
f such that f(n) is prime for all n € N.

. (Advanced topics) Use the Prime Number Theorem and a bit of calculus to prove the following weaker
form of Bertrand’s Postulate:

Proposition. There are only finitely many n € N such that the interval [n, 2n] does not contain a prime
number.



