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Coloring of planar graphs and maps 05/25/20272

One of the most interesting theorems in both graph theory and math
history is the Four Color Theorem., We see two alfernafive versions of if,
and the history of that theorem,

Six Color Theorem

Theorem
Every planar graph can be colored using six colors,

Lemma
1T every subgraph of a graph 6 has a verfex of degree at most k, fhen
G is (k+1)—colorable,

Proof of the lemma

By induction on the number n of vertices,

— The graph with one vertex is 1—colorable, and the only vertex has
degree o,

— Assume that every graph with at most n verfices such that all ifs
subgraphs contain a vertex of degree at most k is (k+1)—colorable,
— We now look at a graph G with n+1 verfices, and we assume fhaf
every subgraph has a verfex of degree af most k, Let v be a verfex
in 6 with degree af most k., Then, the induced subgraph 6—v has n
vertices and safisfies the induction hypothesis; it is (k+1)—colorable,
Since v has k neighbors, it can be colored with one of the k+1 colors,

Proof of the Six Color Theorem

Recall that a planar graph with n vertices has af most 3n—s edges, That
means that there is a verfex with degree at most 5 in every planar
graph (and ifs subgraphs), because otherwise there would be at least
3n edges.



So every subgraph of G is planar and therefore contains a vertex of @
degree at most s5; using the lemma, it is ¢—colorable, o

Five Color Theorem

Five Color Theorem (Heawood, 1840)
Every planar graph is s—colorable,

Sketch of proof (details in the fextbook)

The proot uses strong induction on the number of verfices.

Base cases: If fhere are at most 5 verfices, the graph is s—colorable,
Induction step: The graph has at least ¢ verfices (and is planar). Using
the same argument as for the Six Color Theorem, there is a verfex v of
degree at most 5. Also, 6—v safisfies the induction hypothesis, so it is
s—colorable, If v has fewer than s neighbors, or it two of the five
neighbors of 6 have the same color, we can color v with the fifth color,

and we are good,

So assume, by contradiction, that 6—v is s—colorable, but 6 is noft,
Necessarily, that means v has neighbors with all different colors: label the
five neighbors a,b,c,d and e, with colors respectively 1,2,3,4 and s,
Also, since G is not s—colorable, there is no way we can swifch the colors
of the neighbors of v to repeat the colors,

That means that, for any pair of colors i and j, the verfices in the
neighborhood of G that have colors i and | are joined by a path
alfernating befween vertices of color i and color j. Necessarily, these
paths must cross at one point (details of the last argument are in the
Textbook),

Path with vertices of

The paths must cross al a vertex, because The graph color 1 and 3
is planar, but fhis vertex should have a color among S
1 and 3 and among 2 and 4; a contradiction, ‘27YL_3 |
So it G6—v is s—colorable, 6 must also be o \q, _____

<" What color for
S_CO\OVab\e, this vertex?
Path with verfices of

color 2 and 4



Remark @

Maybe you are (sort of) convinced by This argument that if 6—v is
five—colorable, then so is G, buf what about if v had only 4 neighbors
and G—v was 4—colorable? Could we say that 6 is 4—colorable as well?

Four Color Theorem

A map is a plane drawing, The dual graph of a map is a planar graph.

A coloring of a map is a coloring of its dual graph: fwo adjacent
regions cannot be colored with the same color,

Theorem (Appel, Haken and their computer, 197)
Every planar graph is 4—colovable, Every map is 4—colorable,




®

A bif of history on the Four Color Theorem

1852: Earliest known posing of fhe conjecture (in ferms of map coloring)
1g7¢: Popularization of the conjecture at a mathematical meeting

179 First "proof”, similar To the proof of fhe Five Color Theorem
18719—14%: Plenty of incomplete proofs

197: Kenneth Appel and Wolfgang Haken prove the theorem using
computer enumeration, They reduced The general case fo 1,834 cases
That The computer has to check, I1 takes over 1,000 hours To the
computer To complete the proof, which cannot be read by a human
being.

1996: Simplification of the proot to (only) ¢33 cases

2005. Computer verification of the proot

2022+% Can we imagine a proof that would be readable by a human?

Coloring on surfaces, in general

The genus of an orientable surface is its number of handles,

p— (S \ﬁ\a The plane and the sphere
u P y have genus 0

Genus 1 Genus 2 Genus 3

A graph is embeddable on a surface if it can be drawn on it without
edges crossing.
A planar graph is embeddable on a plane,

Theorem

An orienfable surface with genus g has Euler's characteristic 2—29.
That implies that a graph with n verfices and e edges that is
embeddable on a surface of genus g safisfies n—e+t-2—2qg, where
f is the number of faces.



& ®

On a surface of genus 1, we can solve the

0O 0 O s—ulility problem: (demonstration)

Theorem
1t G is embeddable on a forus (genus 1), then G is 1—colorable,

Proof
We know:

— tuler's formule for the forus: n—e+t - 2—29 - o,
— 2¢e = (sum of the length of the taces) = 3t.

This means That 3n—3e+3f = 0. So, 3n—3e = —3t, and 3n—3e = —2e.
So 3n =e,

Thus, There is a verfex with degree at most ¢ tor every graph

embeddable in the forus. This implies that every subgraph of 6 has a
verfex of degree af most o,

Using the lemma from the section for the six color theorem), that means
that 6 is 1—colorable,

&

Theorem

There exist some graphs that are embeddable on the torus that have
chromatic number 1,

Proof

K7 can be embedded on the forus, as shown below, As every complete
graph, its chromatic number is itfs number of verfices,

Source of the picture:
Wikipedia

Reference: Douglas B, West, Introduction to graph theory, 2nd edition, 2001, Section &.3



