
Math 38 - Graph Theory
Coloring of planar graphs and maps

Six Color Theorem

One of the most interesting theorems in both graph theory and math 
history is the Four Color Theorem. We see two alternative versions of it,
and the history of that theorem.

Theorem
Every planar graph can be colored using six colors.

Proof of the Six Color Theorem
Recall that a planar graph with n vertices has at most 3n-6 edges. That
means that there is a vertex with degree at most 5 in every planar
graph (and its subgraphs), because otherwise there would be at least
3n edges.

Lemma
If every subgraph of a graph G has a vertex of degree at most k, then
G is (k+1)-colorable.

Proof of the lemma
By induction on the number n of vertices.
- The graph with one vertex is 1-colorable, and the only vertex has
degree 0.
- Assume that every graph with at most n vertices such that all its 
subgraphs contain a vertex of degree at most k is (k+1)-colorable.
- We now look at a graph G with n+1 vertices, and we assume that
every subgraph has a vertex of degree at most k. Let v be a vertex
in G with degree at most k. Then, the induced subgraph G-v has n
vertices and satisfies the induction hypothesis; it is (k+1)-colorable.
Since v has k neighbors, it can be colored with one of the k+1 colors.
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2So every subgraph of G is planar and therefore contains a vertex of
degree at most 5; using the lemma, it is 6-colorable.

Five Color Theorem

Five Color Theorem (Heawood, 1890)
Every planar graph is 5-colorable.

Path with vertices of
color 1 and 3

Path with vertices of
color 2 and 4

What color for
this vertex?

Sketch of proof (details in the textbook)
The proof uses strong induction on the number of vertices.
Base cases: If there are at most 5 vertices, the graph is 5-colorable.
Induction step: The graph has at least 6 vertices (and is planar). Using
the same argument as for the Six Color Theorem, there is a vertex v of
degree at most 5. Also, G-v satisfies the induction hypothesis, so it is
5-colorable. If v has fewer than 5 neighbors, or if two of the five
neighbors of G have the same color, we can color v with the fifth color,
and we are good.
So assume, by contradiction, that G-v is 5-colorable, but G is not. 
Necessarily, that means v has neighbors with all different colors: label the
five neighbors a,b,c,d and e, with colors respectively 1,2,3,4 and 5.
Also, since G is not 5-colorable, there is no way we can switch the colors
of the neighbors of v to repeat the colors.
That means that, for any pair of colors i and j, the vertices in the 
neighborhood of G that have colors i and j are joined by a path
alternating between vertices of color i and color j. Necessarily, these
paths must cross at one point (details of the last argument are in the
textbook).
The paths must cross at a vertex, because the graph
is planar, but this vertex should have a color among
1 and 3 and among 2 and 4; a contradiction.
So if G-v is 5-colorable, G must also be
5-colorable.



3Remark
Maybe you are (sort of) convinced by this argument that if G-v is 
five-colorable, then so is G, but what about if v had only 4 neighbors
and G-v was 4-colorable? Could we say that G is 4-colorable as well?

Four Color Theorem

A map is a plane drawing. The dual graph of a map is a planar graph.

A coloring of a map is a coloring of its dual graph: two adjacent
regions cannot be colored with the same color.

Theorem (Appel, Haken and their computer, 1976)
Every planar graph is 4-colorable. Every map is 4-colorable.
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A bit of history on the Four Color Theorem

1852: Earliest known posing of the conjecture (in terms of map coloring)
1878: Popularization of the conjecture at a mathematical meeting
1879: First "proof", similar to the proof of the Five Color Theorem
1879-1976: Plenty of incomplete proofs
1976: Kenneth Appel and Wolfgang Haken prove the theorem using
computer enumeration. They reduced the general case to 1,834 cases
that the computer has to check. It takes over 1,000 hours to the
computer to complete the proof, which cannot be read by a human
being.
1996: Simplification of the proof to (only) 633 cases
2005: Computer verification of the proof
2022+? Can we imagine a proof that would be readable by a human?

Coloring on surfaces, in general

Genus 1 Genus 2 Genus 3

The plane and the sphere
have genus 0

The genus of an orientable surface is its number of handles.

A graph is embeddable on a surface if it can be drawn on it without
edges crossing.
A planar graph is embeddable on a plane.

Theorem
An orientable surface with genus g has Euler's characteristic 2-2g.
That implies that a graph with n vertices and e edges that is 
embeddable on a surface of genus g satisfies n-e+f=2-2g, where
f is the number of faces.



Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 6.3

Theorem
If G is embeddable on a torus (genus 1), then G is 7-colorable.

Proof
K7 can be embedded on the torus, as shown below. As every complete
graph, its chromatic number is its number of vertices.

Source of the picture:
Wikipedia

Proof
We know:
- Euler's formule for the torus: n-e+f = 2-2g = 0.
- 2e = (sum of the length of the faces) ≥ 3f.

This means  that 3n-3e+3f = 0. So, 3n-3e = -3f, and 3n-3e ≥ -2e.
So 3n ≥ e.
Thus, there is a vertex with degree at most 6 for every graph
embeddable in the torus. This implies that every subgraph of G has a
vertex of degree at most 6.

Using the lemma from the section for the six color theorem), that means
that G is 7-colorable.

Theorem
There exist some graphs that are embeddable on the torus that have 
chromatic number 7.

5
On a surface of genus 1, we can solve the 
3-utility problem! (demonstration)


