
Math 38 - Graph Theory
Basic definitions and some problems
Can you draw these pictures, without ever crossing your path?

Can you draw this picture without ever lifting your pencil?

These are children problems, but also real-life problems in graph
theory, namely to know whether a graph is planar, or similar to 
know if a graph is Eulerian.

The first problem: Seven bridges of Königsberg (Euler, 1736)

Euler was wondering if one can go
from one place in the Königsberg
area, and back to that original 
place, by taking every bridge
exactly once.

(This is considered to be the first
solved problem in graph theory).

A modelisation of the problem:

This graph model the
areas of the city. There
is no need to know the 
exact location of each
bridge.

Remarks:
- Since we have to go back where we started, we do not care where
we start.
- Everytime we go from a location to another and back, we cross 2
bridges adjacent to that location.
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Since every island has an odd number of bridges, it is not possible
to visit all the islands by taking every bridge exactly once.
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Some definitions

Example

  Not simple graphs Simple graph

When uv (or equivalently) vu is an edge, we say the vertices u and
v are adjacent, or that they are neighbors.

Multiple edges are edges having the same pair of endpoints.
A simple graph is a graph having no loop nor multiple edges.

Subgraphs and containment

A graph G is made of a set of vertices (modeling some objects), and
a set of relations between two vertices, called the edges. We denote
G = (V,E) for the graph with vertices V and edges E. Any edge is a 
pair of two vertices called the endpoints.

We draw a graph (on paper or on the computer) by representing the
vertices as points, and we draw a curve between two vertices if they
are endpoints of the same edge. We can draw differently the same 
graph.

A loop is an edge whose endpoints are the same vertex.

A graph G'=(V',E') is a subgraph of G=(V,E) if V'⊆ V and E'⊆E.
We then say that G' is contained in G, denoted G'⊆G.



Some important problems in graph theory
1. Acquaintances
Do every set of six people contain at least three mutual acquaintances
or three mutual strangers?

Two graphs. The first one is a
5-vertex graph with no three mutual
strangers, nor three acquaintances.
The second one has six vertices, and
contain both three mutual strangers
and three acquaintances (a clique).

As a homework, you will have
to prove your solution to this
statement.

A clique
An independent set

Definition
A bipartite graph is the disjoint union of two independent sets.

A graph is connected if, for every pair of vertices, there is a path
(i.e. a sequence of edges) between them that belongs to the graph.
It is otherwise disconnected.

That question can be represented using a graph. Every person is a
vertex, and there is an edge between two persons if they know
each other. Here, we assume knowing each other is a mutual relation,
i.e. knowing a celebrity usually does not count.

Some useful vocabulary:
A clique in a graph is a set of pairwise adjacent vertices, i.e. a
complete subgraph.
An independent set is a subset of vertices with no adjacent pairs.

Example
Every graph with n vertices is a subgraph of the complete graph with
m≥n vertices.

2. Job assignments
If there are m jobs and n people, not all qualified for all the jobs, 
is there a way we can fill all the jobs?
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people
jobs

The edges are between a job and
a qualified person for that job.

(The jobs cannot all be filled in this example).

Vertices: Subjects
Edges: If someone takes both subjects,
i.e. eventual scheduling conflicts. 

Schedule:
1. History-English-PE
2. Chemistry
3. Math

Reference: Douglas B. West. Introduction to graph theory, 2nd
edition, 2001. Sections 1.1.1 and 1.1.2.
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3. Scheduling and avoiding conflicts
My high school used to have a very long exam sessions at the end of
the year, and there were still some conflicts. I wish the administrators
knew graph theory...

A coloring of a graph is a partition of
a set into independent sets. Scheduling
with no conflicts is equivalent to coloring.
If we want to use the minimum time, we 
should use as few colors as possible.

Chemistry
Math

English History

Physical
 Education



Math 38 - Graph Theory
Matrices for graph and Isomorphisms

We saw last class that two graphs are the same if they are differently,
as long as we are simply "moving the vertices". The goal of today's
lecture is to make this statement more formal. One tool we will use is
adjacency and incidence matrices. We will as well start classifying the
graphs. 

A(G) =




0 1 1 0
1 0 2 0
1 2 0 1
0 0 1 0


 M(G) =




1 1 0 0 0
1 0 1 1 0
0 1 1 1 1
0 0 0 0 1




Isomorphisms
So when are two graphs the same? We will answer this question using
the notion of a bijection. As a reminder, this an injective and 
surjective function, or a one-to-one correspondence.

The degree of a vertex (in a loopless graph) is the number of
edges incident to that vertex.

The graph on the left has the following adjacency and incidence
matrices:

The adjacency matrix is always a symmetric matrix.
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An isomorphism from a simple graph G to a simple graph H is a 
bijection f:V(G)→V(H) such that every edge uv of G is mapped
to the edge f(u)f(v) of H. We then say G and H are isomorphic,
denoted G ≅ H.

Let G=(V, E) be a graph without any loop (it does not have to be a
simple graph). We number the vertices from 1 to n and the edges
from 1 to m.

The adjacency matrix of G, written A(G), is the matrix whose (i,j)-
entry is the number of edges with endpoints the vertices i and j.
The incidence matrix of G, written M(G), is the n-by-m matrix whose
(i,j)-entry is 1 if vertex i is an endpoint of edge j, and otherwise 0.

Matrices: adjacency matrix and incidence matrix
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Example
The following graphs are isomorphic:

This is easily seen with the bijection that exchanges 1 and 3.

Example
The following graphs are not isomorphic. They both have six vertices,
all of degree 3, and nine edges, and they are both connected, but 
one is bipartite and the other is not. Since they don't have the same
properties, they are not isomorphic.

Example
All the isomorphism classes for graphs with 4 vertices are

Special graphs
There are some graphs that have special names, and that turns out to
be handy for whenever we want to use them or to classify them.

This is equivalent to asking that there exists a simultaneous
permutation of the rows and columns of the adjacency matrix of G 
that would yield the adjacency matrix of H.

No triangle appear in the first graph.

Remarks:
- Finding a bijection of the labels is the way to prove two graphs
are isomorphic. However, to prove they are not isomorphic, there are
many ways. For example, if the list of degrees is not the same, you
will never be able to find an isomorphism. Or if the number of edges
(or edges) do not correspond. Among others.
- The isomorphism relation is an equivalence relation, i.e. this is a
symmetric relation (G≅H iff H≅G), a transitive relation (G≅H and H≅J
imply G≅J) and a reflexive one (G≅G). That means that we can split
the graph into equivalence classes.



Complete graphs: Graphs with n vertices and   edges.

Complete bipartite graphs: Bipartite graphs with independent sets of
size s and r, with sr edges.

Paths: Connected graphs, with all the vertices of degree 2, except 
at most two who have degree 1.

Cycles: Paths with as many edges as vertices.

Example: C  is self-complementary.
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Note: K   is often called the claw.

The complement of the graph G is the graph that has the same
vertices and whose edges are all the edges that do not belong to G:

Example:

Example:

Example:

Example:

≅

A graph G is self-complementary if its complement G is isomorphic
to G.

Example: The cube decomposed into copies of K

A decomposition of a graph is a list of subgraphs in which every
edge appears exactly once.

Proposition
A graph G is self-complementary if and only if the complete graph
is a decomposition into two copies of G.
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The Petersen graph

The Petersen graph is a 10-vertices graph with 15 edges that is very
famous, as it is an example or a counter-example to many phenomena.

The Petersen graph is the graph of 2-element subsets of {1,2,3,4,5},
and there is an edge between 2 subsets if their intersection is empty.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 1.1

Some properties of the Petersen graph:
- Two non-adjacent vertices share exactly one 
neighbor.
- The graph has no triangle, but is not bipartite.
- The shortest cycle in the Petersen graph has length 5.
(The length of the shortest cycle in a graph is called
the girth of the graph.)



Math 38 - Graph Theory
Connection in graphs

Today's lecture aims to define the proper vocabulary to talk about 
trajectories and connectedness in graphs.
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Definitions

Example

Recall that a path is a graph whose vertices can be ordered without 
repetition (except maybe for the endpoints) in a sequence such that
two consecutive vertices are adjacent. A path is a u,v-path if it starts
at vertex u and ends at vertex v.

A walk is a list (v,e,v,...,e,v) of vertices and edges such that the edge
e has endpoints v  and v. A walk is a u,v-walk if its endpoints
(the first and last vertices of the walk) are u and v. If there is no
multiple edges, we can write the walk as (v,v,...,v).

A trail is a walk with no repeated edge. Similarly, a u,v-trail has 
endpoints u and v.

The points that are not endpoints are internal vertices.

The length of a walk, trail, path or cycle is its number of edges.
A walk or a trail is closed if its endpoints are the same.

(a,x,a,b,x,u,y,x,a) specifies a closed walk,
but not a trail (ax is used more than
once).

(a,b,x,u,y,x,a) specifies a closed trail.

The graph contains the five cycles (a,b,x,a), (u,y,x,u), (v,y,x,v),
(x,u,y,v,x) and (y,c,d,y).

The trail (x,u,y,c,d,y,v,x) is not an example of a cycle, since vertex
y is repeated (so it is not a path).



2Lemma
Every u,v-walk contains a u,v-path.

Proof
The proof can be done using the principle of strong induction, and 
we induce on the number of edges.

Base case: No edge, u=v is the only vertex in the graph. Only walk 
has length 0, and is therefore a path.

Induction hypothesis: Assume that, for a walk with k<n edges, there is 
always a path with the same endpoints.

Example: The u,v-walk from previous page.

Induction step: The walk has n edges. There are two cases: either
there is no repeated vertex or only the endpoint is repeated, and
then the walk is already a path, or there is a repeated vertex x.
In the latter case, we delete the edges between the first and last
occurrences of x, which leaves us with only one copy of x, and a 
u,v-walk with fewer than n edges. We can thus use the induction
hypothesis to conclude that there exists a u,v-path in the u,v-walk.

In the walk (a,x,a,b,x,u,y,x,a), we delete
what happens between the first two
occurrences of a, and get the closed walk
(a,b,x,u,y,x,a). Then we delete what happens
between the two occurrences of x, and get
the cycle (a,b,x,a), which is a path.

Connectedness, components and cuts

Recall that a graph is connected if and only if there exists a path 
between u and v for every pair of vertices {u,v}. 

A component of a graph G is a maximal connected subgraph.
A component is trivial if it has no edges; in this case, the unique
vertex is said to be an isolated vertex.



3Example
The following graph has 4 components, each of which are circled in
orange.

An isolated vertex

Proposition
Every graph with n vertices and k edges has at least n-k components.

Induction hypothesis: Assume that a graph with k-1 edges and n vertices
has at least n-k+1 components. 

Proof
The proof can be done by induction on k. The case of k>n is obvious,
since the number of components is always nonnegative.

Base case: If k=o, then each of the n vertices are isolated, and there
are n components.

Induction step: Let G=(V,E) with |V|=n and |E|=k. Remove the edge e
to get G-e. The component of G containing e can either be split into
two components by removing e, or stay a component. So G has either
the same number of components as G-e, or one fewer. By induction
hypothesis, G-e has at least n-k+1 components, so G has at least n-k.

In the last proof, we had to distinguish the cases where removing the
edge was creating a new component or not. An edge whose deletion
creates new component has a special name:

A cut-edge or cut-vertex of a graph is an edge or vertex whose
deletion increases the number of components. We write G-e or G-M
for the subgraph of G obtained by deleting an edge e or a set of
edges M; we write G-v and G-S for the graph obtained by deleting a
vertex v or a set of vertices S along with their incident edges.
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A subgraph obtained by deleting a subset of vertices and their incident
edges is an induced subgraph: we denote it G[T] if T=V\S and we
deleted the vertices in S.
Example

Vertices 3 and 5 are cut-vertices, and the edge
g is the only cut-edge.
The induced subgraph for the vertices 1, 2, 
3, 4 and 6:

Theorem
An edge is a cut-edge if and only it if belongs to no cycle.

Proof
Let e=uv be an edge in the graph G, and let H be the component
containing e. We can restrict the proof to H, since deleting e does not
influence the other components. We want to prove that H-e is
connected if and only if e is in a cycle in H.

If H-e is connected, then there exists in it a path P between u and v.
Hence, adding edge e=uv creates the cycle P+e.

If e is in a cycle c, c-e is a path P between v and u avoiding the
edge e. To show that H-e is still connected, we need to show that,
for every pair of vertices {x,y}, there is a path between x and y. Since
H is connected, there exists in H such a path. If that path does not
contain e, it is still in H-e. Otherwise, replace e by P, and remove an
edge from that path everytime it appears twice consecutively. 

The last theorem allows us to characterize cut-edges. Would such a
theorem be possible for cut-vertices? The following example proves that
asking for it to be outside a cycle is not a requirement for a cut-
vertex, since vertex 3 is a cut-vertex, and belongs to two cycles:
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Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 1.2

Removing vertex 3:

Two connected
components



Math 38 - Graph Theory
Bipartite and Eulerian Graphs

Characterization of bipartite graphs
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Today's lecture aims to give the important properties of bipartite
graphs. We will also define Eulerian circuits and Eulerian graphs: this
will be a generalization of the Königsberg bridges problem. 

The goal of this part is to give an easy test to determine if a graph
is bipartite using the notion of cycles: König theorem says that a graph
is bipartite if and only if it has no odd cycle.

Lemma
Every closed walk of odd length contains an odd cycle. This is called 
an odd closed walk.

Proof
We prove it using strong induction on the length of the walk (i.e.
the number of edges).
Base case: length 1. The walk is a loop, which is an odd cycle.
Induction hypothesis: If a walk has odd length at most n, then it
contains an odd cycle.
Induction step: Consider a closed walk of odd length n+1. If it has
no repeated vertex (except the first and last one), this is a cycle
of odd length. Otherwise, assume vertex v is repeated. We can split
the walk into two closed walks starting and ending at v, one of
even length, and one of odd length smaller than n. By induction
hypothesis, the latter contains an odd cycle.
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That lemma will be helpful for characterizing bipartite graphs. Of 
course, bipartite graphs can have even cycles, which starts in one
independent set and ends there.

We can represent the independent
sets using colors.

Theorem (König, 1936)
A graph is bipartite if and only if it has no odd cycle.

not possible

Proof
Notice that a graph is bipartite if and only if all its components are
bipartite. So we do the proof on the components.
 ⇒ We prove the contrapositive: it is has an odd cycle, it is not
bipartite.
Since every cycle must end at the vertex where it starts,
it starts and ends in the same independent set. Since every
edge is going from one set to the other, we alternate
between the two sets. At the end of the cycle, we cannot
close it, since we would need to change the set of the
first vertex. Hence, if a connected graph is bipartite, it has
no odd cycle.

⇐ We still need to prove that a connected graph without odd cycle is
bipartite. If the graph has only one vertex, it is bipartite.
Otherwise, start at vertex u, and color its neighbors with color blue.
Then, color the neighbors of the blue vertices in red, and repeat this
process by coloring the neighbors of the red vertices in blue, until
all vertices have been colored. I claim that no vertex will change color
in that process; assume otherwise, that v is changing color. That would
mean that there exists a path of odd length from u to v (the one
that colors v in blue), and a path of even length doing it (the one
that colors v in red). The combination of these two paths is an odd
walk, and contains an odd cycle, which is prohibited by the hypothesis.
Hence, the coloring is well defined, and the two colors represent
independent sets. The graph is bipartite.
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odd cycle even cycle

⇐ We need to prove that a connected graph with only vertices of even
degrees is Eulerian. We can ignore the isolated vertices for this since
we are focusing on the edges. The following lemma is useful:

If a graph has a vertex of odd degree, we are in the case of the
Königsberg bridges: we can leave the vertex more often than we can
come back (or vice-versa), and thus our trail cannot be closed.

neither blue
nor red

Technique for checking whenever a graph is bipartite:
- If it is bipartite, prove it by finding two independent sets.
- If it is not bipartite, find an odd cycle.

Eulerian circuits

The graph in the Königsberg bridges problem is not Eulerian. We saw
that the fact that some vertices had odd degree was a problem, since
we could never return to that vertex after leaving it for the last time.

A graph is Eulerian if it has a closed trail containing all the edges.

If a graph has at least two non-trivial components, there can't be
a walk going through all the edges, since they are in separate
components.

Theorem
A graph is Eulerian if and only if it has at most one nontrivial
component (i.e. component with edges), and if every vertex has even
degree.

Proof
We first prove ⇒ by proving the contrapositive: if a graph has more than
one non-trivial component, or it there is a vertex of odd degree,
then the graph is not Eulerian.
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Lemma
If every vertex of a graph has degree at least 2, then it
contains a cycle.
Proof
Let P be a maximal path in that graph. If it is a cycle,
we are done. Otherwise, let u be an endpoint of P.
Since it has degree at least 2, u has a neighbor v not
in P. But since P is maximal, that means that v is already
in P, and the edge uv completes the cycle.

Proposition
Every graph with only vertices of even degree decomposes into cycles.

Eulerian circuits are closed trails that pass through all edges. A 
similar property is being Hamiltonian: a Hamiltonian circuit is a circuit
that passes though all vertices exactly once. A Hamiltonian graph is
a graph with a Hamiltonian circuit.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 1.2

Proof of the theorem (continued)
We proceed by induction on the number of edges.
Base case: 0 edge, the graph is Eulerian.
Induction hypothesis: A graph with at most n edges is Eulerian.
Induction step: If all vertices have degree 2, the graph is a cycle
(by definition) and it is Eulerian. Otherwise, let G' be the graph
obtained by deleting a cycle. The lemma we just proved shows it is
always possible to delete a cycle. By induction hypothesis, G' is
Eulerian. To build an Eulerian circuit in G, start by the cycle we just
deleted, and append the Eulerian circuit of G'.



Math 38 - Graph Theory
Vertex Degrees and counting
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Today, we are doing a bit of combinatorics and will deduce some
properties on the degrees, number of edges and number of vertices. 

We already defined the degree of a vertex in a loopless graph to be
the number of edges incident to it.
For a general graph, define the degree d (v) of the vertex v to be
the number of edges incident to it, with each loop counted twice.

The order of a graph G=(V,E) is |V|, as the size of G is |E|.

Example
- K  is a regular graph. Each vertex has degree n-1.
- K   is regular if and only if m=n. Then, the degree is always n.
- A connected regular graph that has the same order and size is a
cycle.
- Hypercubes are regular graphs.

Counting and bijections

The maximum degree of a vertex is denoted Δ(G) and the minumum
degree is denoted δ(G).
A graph is said to be regular if δ(G)=Δ(G). 

Corollary
In any graph G=(V,E), the average degree is 2|E|/|V|, and
δ(G) ≤ 2|E|/|V| ≤ Δ(G).  

Proof
For each edge, there are two endpoints (maybe equal). If the
endpoints are different, this edge contributes for 1 in the degree
of two different vertices. If the edge is a loop, it adds 2 to the
degree of the vertex it is incident to. So either way, every edge
accounts for 2 in the total degree count.

v∊V
G

G

Proposition (degree-sum formula)
If G=(V,E) is a graph, then ∑ d (v) = 2|E| .



2Corollary
Every graph has an even number of vertices of odd degree.

Corollary
A k-regular graph (i.e. a regular graph in which the degree of each
vertex is k) has k|V|/2 edges.

Example: Hypercubes
The n-dimensional hypercube H  is defined recursively as:
• H  is the simple graph with one vertex
• H   is obtained by creating two copies of H  and appending an edge
 between corresponding vertices in the two copies.

Proposition
H  is regular, as each vertex has degree n. 

Proposition
If k>0, then a k-regular bipartite graph has the same number of 
vertices in its two independent sets.

Either not bipartite or not
regular.

Proof
The proof can be done by regular induction.
The base case is H , and it has no edge.
Induction hypothesis: The n-dimensional hypercube H  is n-regular.
Induction step: The (n+1)-dimensional hypercube is made of two
copies of H , and we add an edge between every pair of similar
vertices in the two copies. This way, we add exactly one to the
degree of each vertex from H , and that degree is, by induction
hypothesis n.

n

n

n

n
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Vertex-deletion and reconstruction conjecture
Is it possible to reconstruct a graph if you have only a list of its
subgraphs? There is a long-standing, and still open conjecture saying
it is, and so far we know it is almost always possible (that being
understood in a probabilistic sense).

Example

has vertex-deleted subgraphs

For a graph G, a vertex-deleted subgraph is an induced subgraph G-v
obtained by deleting a single vertex v.

Proof
Since the graph is regular, all vertices have degree k. If there are
m edges in total, the sum of the degrees for all the vertices in one
independent set is m, as every edge has exactly one endpoint in that
set. Since the graph is k-regular, there are m/k vertices in each set,
so the order of both sets is the same. 

Proposition
For a simple graph G=(V,E) of order n>2 and size m,

where #E(G-v) is the number of edges in the graph G-v.

Proof
We start with the summation, and we will prove the summation is equal
to m(n-2):

GG v∊Vv∊V v∊V
∑#E(G-v)= ∑ |E|-d (v) = ∑ |E| - ∑ d (v) = mn-2m
v∊V

Conjecture (Reconstruction Conjecture - Kelly, Ulam, 1942)
If G is a simple graph with at least three vertices, then G is uniquely
determined by the list of its vertex-deleted subgraphs (up to
isomorphism).

 4 x

 1 x



4Note that the hypothesis that G has at least three vertices is
important. Otherwise, we would find a counterexample with two vertices,
since both simple graphs with two vertices have the same set of 
vertex-deleted subgraphs.

Example
has vertex-deleted subgraphs

To reconstruct the graph, we know that 4 vertices have degree
#E(G)-4 and 1 has degree #E(G)-2. Using the proposition, the
number of edges in G is (2+4x4)/3=6. So the list of degrees is
(2,2,2,2,4), and the graph is connected.
That means that the vertices are in two cycles. The length of the
cycles can be found by looking at the subgraphs: there is at least one
cycle of length 3. Since the graph is simple, both cycles have length
3 and the graph has to be isomorphic to the bowtie.

Even though the conjecture is not proven, there are a number of cases
that are known. Also, we can know some properties from the list of
subgraphs; for example if the graph is connected.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 1.3

 4 x

 1 x



Math 38 - Graph Theory
Extremal problems

Extremal problems consider the minimum and maximum numbers some
statistics on a class of graphs can reach. We introduce some of the 
types of proofs useful in graph theory: Algorithmic, and by
construction. 

First example
In any simple graph (V,E), the maximum number of edges is 

Nadia Lafrenière
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Example
In a bipartite graph with independent sets of size k and m, there
can be at most km edges.

Edges in connected graph
Proposition
The minimum number of edges in a connected graph with n vertices is
n-1.

Proof
We need to prove two things:
- If a graph with n vertices has fewer than n-1 edges, it is not
connected.
- There exists a connected graph with n vertices and n-1 edges.

This is an extremal problem, since we are looking at the maximum
number of edges. The class of graphs here is all simple graphs.

Proof
In a simple graph, there can be at most one edge per pair of 
distinct vertices. The maximum number of edges appear in K

Independent sets of size 2 and 4,
8 edges at maximum. km is the number
of edges of K  .
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Remark (on the proof technique)
When giving the solution to an extremal problem, there are two parts
to be proven:
- That the value we give is minimal (or maximal), i.e. that you cannot
give a lower (respectively, higher) value.
- That this value can be realized on at least one graph of the class we
consider.

Recall from last week (Friday), that a graph with n vertices and
m edges has at least n-m components. Hence, if m<n-1, the graph
has at least 2 components and is not connected.
Also, the path with n vertices has n-1 edges and is connected, proving
that the minimum is realized.

Proposition
Let G be a simple graph with n vertices. If the minimum degree is 
δ(G)≥ (n-1)/2, G is connected.

Proof
The minimum degree of the graph means that every vertex should have
at least this number of neighbors, in a simple graph.
To prove that G is connected, we must show that there is a path 
between any pair of vertices {u,v}. We will in fact prove that there
exists a path of length at most 2.
- If {u,v} are adjacent, they are obviously in the same component.
- Otherwise, they share at least one neighbor w: There are n-2 other
vertices, and the sum of their degree is d(u)+d(v)≥n-1. Hence,
u-w-v is a path connecting them.

A bound is said to be sharp if improving it (reducing a lower bound or
increasing an upper bound) would make the statement wrong.

11 vertices
Minimum degree is 4, just under
5 = (11-1)/2.
Graph is disconnected.

The bound in the last problem is sharp. To prove it, we give an example
of a graph with n vertices and minimum degree   -1 that is not
connected: This graph is the disjoint union of K   and K  .

K , degree 4 K , degree 5



3Bipartite subgraph

Theorem
Every loopless graph G=(V,E) has a bipartite subgraph with at least |E|/2
edges.

Here we prove that, given a graph G, we can always find a bipartite
subgraph with at least a fixed number of edges. We give an 
algorithmic proof to construct the graph, but a proof can also be done
by induction.

Proof (algorithmic)
We start with any partition of the vertices into two sets X and Y.
Let H be the subgraph containing all the vertices, but only the edges
with one endpoint in X and one in Y.

6 edges, instead of 10

End

As long as H does not have at least half the edges of G at every
vertex, there are vertices that can be swapped from X to Y or Y to X;
repeat this process. When it terminates, the number of edges 
in H is always at least half the number of edges of G.

Triangle-free graphs
A graph is said to be triangle-free if it has no three
vertices that are all adjacent. In general, a graph G is
H-free if it does not contain H as a subgraph.

The Petersen graph is triangle-free (but not bipartite).
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↦

↦

= less than half the edges

↦ ↦

Let v be a vertex in X. If H has fewer than half the edges incident to
v, then it means that v has (in G) more neighbors in X than in Y. To
increase the number of edges in H, switch v to Y. The number of
edges just increased.
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Theorem (Mantel, 1907)
The maximum number of edges in a simple triangle-free graph with n
vertices is   .

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 1.3

We can split 7 vertices into two sets 
of 3 and 4 vertices, which leads to 
12 edges:, which is the smallest integer
below 49/4.

For the second part, we must prove that a triangle-free graph has
edges. This is the case of K    .

Proof
For the proof, we again need to prove two things:
-that a triangle-free graph with n vertices cannot have more than
edges.
- that there exists, for any n, a graph with n vertices and    edges
that has no triangle.

For the first part, assume the graph is triangle-free. Take a vertex v
of maximal degree ∆. Its ∆ neighbors cannot have edges among them.
So every edge of G must have at least one endpoint in a 
non-neighbor of v, or in v itself. There are n-Δ such
vertices. Each such vertex has degree as most Δ.
Therefore, we give an upper bound on the number of edges:
the number of edges is at most ∆(n-∆) (because n-∆  is the number
of vertices not adjacent to v). Maximizing ∆(n-∆) gives ∆=n/2.
Hence, the number of edges is at most   .



Math 38 - Graph Theory
Graphic sequences

We look at the list of degrees to get some information on the graph.
We also look at what list of nonnegative integers can be the degree
sequence of some graph.

d1 ≥ d2 ≥ . . . ≥ dn ≥ 0

Let G be a graph with vertices v, v, ..., v. The degree sequence
of G is the list d(v), d(v),..., d(v). Usually, we write this sequence
in decreasing order (and reorder the labels accordingly):

Proposition
The nonnegative integers d, d, ..., d are the degree sequence of
some graph if and only if their sum is even. 

Nadia Lafrenière
    04/11/2022

Proof
We need to prove that the condition is both necessary and sufficient.

=> (the condition is necessary) We already showed (last week) that
the sum of the degrees in a graph is always even.
<= (the condition is sufficient) This part of the proof is done by
constructing a graph with a given degree sequence.
First, we consider all the vertices with odd degree (there is an even
number of them). We pair them by drawing exactly one edge at each
of these odd vertices. After this step, the number of endpoints to
be added to every vertex is even, so we can add half this number
of loops, making it a degree sequence.

Example
(5,3,2,1,1) can be realized on a (non-simple) graph in this way:

Of course, this technique does not work for simple graphs, because of
the loops. Moreover, 5 cannot be the degree of a vertex in a simple
graph with 5 vertices.



2A graphic sequence is a list of nonnegative integers that is the 
degree sequence of some simple graph. A simple graph with degree
sequence d realizes d.

Characterization of graphic sequences
We already noticed the two obvious conditions for a nonnegative
integers sequence to be graphic, i.e. the sum of degrees must be
even and the maximal number cannot be greater than n-1. However,
this is not enough, as shown with the degree sequence (2,0,0), which 
must necessarily involve a loop.

Theorem (Havel 1955, Hakimi 1962)
The only one-element graphic sequence is (0).
For n>1, an integer list d of length n is graphic if and only if d' is
graphic, where d' is obtained by deleting its largest element (Δ) and 1
from the Δ next largest degrees.

Example
The graph below has degree sequence d=(3,2,2,2,1).
It is obvisouly graphic by the picture. Here, Δ=3, and we obtain d'
as (1,1,1,1). Notice that it is not the degree we obtain by deleting the
highest-degree vertex (shown on the right), which would be
(2,1,1,0). And (1,1,1,1) is also realizable, as shown below.

(2,1,1,0)(3,2,2,2,1) (1,1,1,1)

Proof (of theorem)
The case where there is only one vertex is obvious.
We need to prove that this condition is necessary and sufficient when 
n>1.
<= (sufficient) If d' is realizable, there exists a graph G' with vertices
having d' as degrees. I want to add a vertex that has degree Δ 

greater than the largest degree of G'. To do so, I add the vertex
and connect it to the Δ vertices with larger degrees in G', realizing d.



3
d' = (2,1,1,0)
d = (3,3,2,2,0)

Example

The case of loopless graphs
Multigraphs (even loopless) have a much easier characterization for 
degree sequences, as given by this theorem of Hakimi.

Theorem (Hakimi, 1962)
A sequence of decreasing nonnegative integers d,d,...,d is the degree
sequence of a loopless graph if and only if its sum is even and

d1 ≤ d2 + . . .+ dn

=> (necessary) There are two cases to consider. 1) The vertex v of
degree Δ has neighbors that have the Δ next highest degree. Deleting
v and its incident edges yield a graph with degree sequence d'.
2) Consider the neighborhood of v (the vertex of higher degree)
and call it N. Let S be the set of the Δ vertices having the highest 
degrees (except for v). Case 1) is when N=S, so here they are distinct.
We will transform G to get N=S.
Take a vertex u in N\S, so u is adjacent to v, but has a low degree,
and take w in S\N (not adjacent to v, but high degree).
Since w has higher degree than u in G\{v}, w has at least one neighbor
x that is not adjacent to u.

By switching the edges uv and xw to vw and ux (from the blue to the
red in the picture), we increase |N⋂S|. We repeat this process as long
as N≠S. When N=S, we use the first case.

No edge in the
original graph.

(3,2,2,2,1)
(3,2,2,2,1) (1,1,1,1)

↦ ↦ ↦
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Proof is left as homework for next week's set.
Hint: You can proceed by construction, but it might be easier to do 
induction (not necessarily on the number of vertices).

Graphs with same graphic sequence

In the last proof, we exchanged the endpoints of some edges to get
a new graph with the same graphic sequence.

A 2-switch is the replacement of a pair of edges {uv, wx} by
{ux, vw}, provided ux and vw did not already exist in the graph.

Remark
A 2-switch always preserves the degree of each vertex. 

Example

↦

2-switch

Both graphs have degree sequence (2,2,2,2,2,2).

The proof is omitted, but can be found on page 47 of the textbook.
The condition is clearly sufficient, as the 2-switches preserve the 
degree of each vertex.

Theorem (Berge 1973)
Two simple graphs G and H have the same graphic sequence if and
only if there is a sequence of 2-switches from G to H.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 1.3
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Directed graphs

A directed graph or digraph is made of two sets: the vertices, and a
set of edges defined as ordered pairs of two vertices: a tail and a
head. For one edge, the tail and the head are both endpoints, and
we say the edge is from its tail to its head. We sometimes use the
word arrow for the edges of a directed graph.

We introduce directed graphs and their terminology. Applications include
Markov chains, automata and De Bruijn graphs.

Nadia Lafrenière
    04/13/2022

Edge from u to v

Some examples

Car traffic around
the Green

Trail etiquette

Preposition

Determinant

Punctuation

Conjuction

Noun

Verb

Parts of speech in
the sentence: "While
at the beach, the
dog eats the biscuits
in the box."

Not a multiple edge

Like in undirected graphs, a loop is an edge with its two endpoints
being equal. Multiple edges are edges having the same tail and the 
same head.

A directed graph is simple if there is no loop nor multiple edges.

Example: All the directed graphs above are simple.
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In a simple digraph, we write the edge from u to v as uv (and so 
this is not the same as vu). If uv is in the graph, v is a successor of
u and u is a predecessor of v.

The underlying graph of a digraph D is the undirected graph G in which
we removed the orientation of the edges. Hence, uv=vu, and if uv and
vu both appear in D, uv is a multiple edge of G.
Remark: The underlying graph of a simple digraph is not always a simple
graph.

simple multiple edges

Adjacency and incidence matrix

A(D) =




0 0 1 0
1 0 1 0
0 1 0 0
0 0 1 0


 M(G) =




−1 +1 0 0 0
+1 0 +1 −1 0
0 −1 −1 +1 −1
0 0 0 0 +1




A simple digraph is a path if its vertices can be ordered so that v
follows u in the vertex ordering if and only if there is an edge from
u to v. The only vertex that can be repeated is the first and the last
vertices, if they are equal; the path is then a cycle.
Equivalently, we can define walks and trails (walks without repeated
edges) in the same way as in undirected graphs.

In a digraph, the adjacency and incidence matrices are not defined in
the same way as in graphs.

The adjacency matrix A(D) of a loopless digraph D has u,v-entry the
number of edges from u to v. The incidence matrix has v,e-entry +1
if v is tail of e, -1 if it is its head, and 0 if v is not an endpoint.

↦

Subgraphs and isomorphisms are defined in the same way as for
undirected graphs.

The digraph on the left has the following adjacency and incidence
matrices:

The adjacency
matrix is no
more symmetric!



3Connectedness: weak and strong
A digraph is weakly connected if its underlying graph is connected.
It is strongly connected if there is a path from u to v, for every
two vertices u and v.

The strong components of a digraph are its maximal strongly connected
subgraphs.

Degree and neighborhood, in and out

Eulerian graphs

The graph below is weakly connected, but not strongly connected, as
there is no path from vertex 3 to vertex 4.

A digraph is Eulerian if it contains an Eulerian circuit, i.e. a trail 
that begins and ends in the same vertex and that walks through every
edge exactly once.

Theorem
A digraph is Eulerian if and only if it there is at most one nontrivial
strong component and, for every vertex v, d⁺(v)=d⁻(v).

Obviously, a graph will not be Eulerian if it has more than one nontrivial
component or if the sum of the in and out degree of some vertex is
odd. The following theorem gives a classification of Eulerian digraphs.

Proof
(⇒) If there is an Eulerian circuit, it visits all the vertices in a
nontrivial component, so there is at most one of them. Also, the
Eulerian circuit goes in and out of v the same number of times, which

v∊V v∊V

Let v be a vertex in a directed graph. Its outdegree is the number
of edges that have v has a tail, and is noted d⁺(v). The indegree is
the number of edges that have v has a head, d⁻(v).
The number of edges is Σ d⁺(v)= Σ  d⁻(v).
The out-neighborhood of v is the set of vertices {u : vu is an edge}.
The in-neighborhood is defined similarly. 
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Lemma
If the outdegree of every vertex is at least 1, then the digraph
has a cycle.

Proof of the theorem (continued)
For a graph with m+1 edges, consider the unique nontrivial strong
component. The lemma applies to it, so there is a cycle c. Removing
the edges of c to the digraph preserves the equality of the in- and
outdegrees. Let D' be that reduced graph. We can apply the
induction hypothesis to get an Eulerian circuit in each strong component
of D'. Each such component shares at least one vertex with c, since 
they are in the same strong component of D. To build an Eulerian
circuit, we travel through c. Each time we get to a vertex that
has neighbors not in c, we visit all the edges in its strong component:
we know it is possible since the component is Eulerian. That process
gives an Eulerian circuit in the original digraph.

means the in- and outdegrees must be equal.
(⇐) We prove by induction on the number of edges that if the in-
and outdegrees are the same at every vertex in a strongly connected
graph, there is an Eulerian circuit.
Base case: When there is no edge, the empty circuit is Eulerian.
Induction hypothesis: Suppose that, whenever there is at most m edges,
every graph that has, at each vertex, the same in- and outdegree,
and that has at most one non-trivial strong component, is Eulerian.
- For a graph with m+1 edges, we first prove the following lemma:

Proof (of the lemma)
Let v be a vertex. Since it has outdegree at least 1, there is a
walk starting at v. Since every vertex has outdegree at least 1,
the walk can always be extended. Since the number of vertices in
D is finite, the walk will go back to a vertex it already visited.
The first time this happens, the part of the walk between the
two occurrences of a vertex is a cycle.



5cycle c

Application: De Bruijn cycles

Problem: What is the minimum length for a sequence containing all the
binary sequences of length n? To solve this problem, use the above
proposition and your homework.

n+1Let D  be the following digraph:
- vertices are binary sequences of length n
- there is an edge from a sequence s to another s' if the n-1 last
letters of s are the n-1 first letters of s'.

4As an example, D is illustrated on the left.

Proposition
The De Bruijn graphs are Eulerian.

For the proof, use the previous theorem and verify
the equality of the out- and indegrees.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 1.4
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Trees

We introduce the notion of trees, a very important type of graph.
Over the next week or two, we will study the properties of trees and
forests.

Definition
A graph with no cycle is acyclic.
An acyclic graph is a forest; a connected forest is a tree.
A leaf is a vertex of degree 1 in a tree.

Lemma
Every tree with at least two vertices has at least two leaves.
Deleting a leaf from an n-vertex tree produces a tree with n-1
vertices.

Proof
A tree is always connected so there is a path p between any two
vertices {u,v}. Since there is no cycle, that path can only be extended 
finitely many times without returning to a previously visited vertex. The
last time it can be extended in one direction, that vertex is a leaf, as
there is no cycle.

Nadia Lafrenière
    04/15/2022

star

a forest

not a tree

Every component here (except the one with
a red X on it) is a tree, and the whole
thing (without the one with the X) is a forest.

Caveat: As graphs, trees don't need to have one specific root. We can
always distinguish one root, but it is not needed. We will go back to 
this subject later.

Leaves are highlighted. A star is the tree in which there is
one vertex adjacent to every other.



2When one deletes a leaf u from a tree, it does not disconnect it,
since there is no path going through that vertex (not as an endpoint),
i.e. for v,w in the graph, there is no path passing through u from v
to w.
One consequence of that lemma is that we can build every tree with 
at least two vertices by "adding leaves". We will discuss that topic
on Wednesday.

The following theorem gives multiple characterizations of trees:
Theorem
Let G be a graph with n vertices (n ≥ 1). The following statements
are equivalent:
(A) G is connected and has no cycles.
(B) G is connected and has n-1 edges.
(C) G has no cycles and n-1 edges.
(D) G has no loop and has, for each pair of vertices {u,v}, exactly
one uv-path.

A B

C D

The proof of such a statement is a closed walk
that visits every vertex in the complete digraph
with vertices A, B, C and D:

Proof
(1 A⇒B) We need to prove that if G is connected and has no cycle, it
has n-1 edges.
By theorem from 4/8, it must have at least n-1 edges for it to be
connected. To prove there is at most n-1 edges, we prove that a
graph with n edges has a cycle (which is not permitted, by hypothesis).
This proof is by induction on n (the number of vertices):
Base case: If n=1, the edge is a loop and that is a cycle.
Induction hypothesis: Assume a graph with k vertices and k edges has
a cycle.
Induction step: We need to prove that a connected graph with k+1
vertices and k+1 edges has a cycle. If there is a leaf, remove it and
delete the incident edge; applying induction hypothesis tells us that 
there is a cycle in the rest of the graph.
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Until now, we proved A<=>B. They are equivalent, so we can use them 
together from now on.

Now, A, B and C are equivalent. That means that two characteristics
among connectedness, no cycles and n-1 edges are sufficient to show
a graph is a tree.

(5 B⇒D) Since B⇒A, the graph has no cycle; in particular, it has no
loop. It is also connected, so there is a path p between any pair of
two vertices {u,v}. To show uniqueness of that path, we use the
hypothesis that there is no cycle, and contradiction: Assume there
exist 2 paths p and q between u to v.

(3 A⇒C) Since A⇔B, we know that G is connected, has no cycle
and has n-1 edges, which already proves C).
(4 C⇒B) We want to show that if a graph has n-1 edges and no
cycles, it is connected. We look at each of the k components.
In the component i (1 ≤ i ≤ k), assume there are n(i) vertices.
Since the component is connected and has no cycle, it has n(i)-1
edges (by A⇒B). Hence, the total number of edges is

i=1 i=1
Σ (n(i)-1)=Σ(n(i))-k=n-k. However, the hypothesis of C is that the
graph has n-1 edges. So there is exactly one component, and the
graph is connected.

kk

If there is no leaf, then the lemma from page 1 proves the graph
is not a tree.
(2 B⇒A) We need to show that if G is connected and has n-1 edges,
it has no cycle. We prove the contraposition: if G is connected and
has a cycle, there is more than n-1 edges. 
Since G has a cycle, there is at least an edge that is not a cut-edge
(by the theorem from 4/1). Deleting that edge would mean the graph
has one fewer edge and is connected, which means, by theorem from
4/8, that the graph with one fewer edge has at least n-1 edges. So
the original graph has at least n edges.



4Let u' be the first vertex in p and q whose next edges differ,
and let v' be the next vertices that appear both in p and q. Then,
the part of p  between u' and v' and the part of q between u' and
v' are paths with no common vertices that have the same endpoints;
gluing them together creates a cycle. Hence, there is a unique path 
between u and v, for any pair of vertices {u,v}.
(6 D⇒A) Since there is a path between every pair of vertices, the
graph is connected. The uniqueness of the path means there is no
cycles, proving A.

Spanning trees
Let G=(V,E) be a graph.
A graph is a spanning subgraph of G if it has vertex set V.
A spanning tree is a spanning subgraph that is a tree.

Example

In purple, five spanning subgraphs of the graph in blue. Only the first,
third and fourth ones are spanning trees.

Theorem
Every connected graph has a spanning tree.

Proof
Every connected graph has a connected spanning subgraph. To remove
the cycles from it, delete one after the edges that are in cycles.
Once there are 1 edge fewer than vertices, the graph will be a tree.

Corollary
a) Every edge of a tree is a cut-edge. (by A)
b) Adding one edge to a tree forms exactly one cycle (corollary of
A⇒B).



5Distance in trees and graphs

Example

Example

Theorem
If G is a simple graph, diam(G)≥3 => diam(G)≤3.

Proof: Read and understand as homework. In the book, that is 
Theorem 2.1.11, p.71.

The center of a graph is the induced subgraph with vertices of
minimum eccentricity. 

The Petersen graph and complete graph have center
the whole graph. The star has, as center, only the
central vertex.

Distance: d(a,b)=d(b,c)=1, d(a,c)=2
Diameter 2. A star always has radius 1, since the 
central vertex has eccentricity 1. The diameter,
for all graph, is the maximal eccentricity.

The Petersen graph has radius and diameter 2.
Recall there is an edge between two vertices if they
represent disjoint 2-sets of {1,2,3,4,5}.
If two vertices ij and jk are not adjacent, they must
share an element (as sets). Then, lm is disjoint from 
ij and jk, so ij-lm-jk is a path of length 2.
Here, {i,j,k,l,m} represents {1,2,3,4,5}.

If G has a uv-path, the distance between u and v, noted d(u,v), is
the smallest length of a uv-path. If G has no such path, d(u,v)=∞.
The diameter of G, diam(G), is the maximum distance between two
vertices.
The eccentricity of a vertex u is the distance to the furthest vertex.
The radius is the minimal eccentricity.
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6Theorem (Jordan, 1869)
The center of a tree is a vertex or an edge.

That means it cannot be a set of vertices, whenever the graph is
a tree. Of course, the examples above show it is not true for graphs
in general.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 2.1
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Enumeration of trees

How many labeled trees are there? And up to isomorphism? This is
the questions we want to ask today. We will only be able to solve one
of these.

n=0, 1 tree n=1, 1 tree n=2, 1 tree n=3, 3 trees

For the example with n=3, the three trees are isomorphic. However,
as labeled trees they are not the same; their adjacency matrices are
different (the vertex with degree 2 is not the same).

In the case of unlabeled trees, there are 1,1,1,1,2,3 trees of 0,1,2,3,
4 and 5 vertices, respectively. These are the trees up to isomorphism.

Example
The number of labeled trees with {0,1,2,3} vertices are, respectively,
1,1,1,3.

Remark: Counting trees, or graphs, up to isomorphism is incredibly
difficult! Hence, we will focus on labeled trees and labeled graphs.

Nadia Lafrenière
    04/18/2022

Doing the same exercise with labeled graphs, we find there are 2
graphs. (Proof will be in homework).

So there are at most 2   labeled trees with n vertices. But we can
expect this number to be much less.

n-2

Theorem (Cayley's formula; proof is from Prüfer, 1918)
There are n   labeled trees with n vertices, if n≥1.



2

n-2

Proof
This proof is done using a bijection. To do so, we have to find
another collection of objects indexed by the positive integers, so that
there are n   items indexed by n.

Algorithm 1: Production of the sequence

Example

<->  (1,5,3,1,3)

Stop

(1)
(1,5)
(1,5,3)
(1,5,3,1)
(1,5,3,1,3)

Natural choice: the n-ary sequences of length n-2.
Given a tree, the corresponding sequence is the Prüfer sequence
or Prüfer code.
We present two algorithms: The first one takes a tree as input and
transforms it into a unique n-ary sequence of length n-2; the second
one takes an n-ary sequence of length n-2 and builds a unique tree
with n vertices. This will prove that the number of n-ary sequences of
length n-2 and the number of binary trees with the same vertices are
the same.

Let T be a tree with vertices {1,2,...,n}. If n<2, we already checked
that there is a single tree. So assume n≥2.
While there is  more than two vertices, remove the leaf with smallest
label (it always exists, by Lemma from Friday). To the sequence,
append the neighbor of that leaf (it is unique, since a leaf has degree
1).
Once there are only two vertices left, stop.



3Algorithm 2: Production of the tree

(1,5,3,1,3)
(5,3,1,3)
(3,1,3)
(1,3)
(3)

Take a n-ary sequence s of length n-2, n≥2.
Draw n isolated vertices, and label them {1,2,...,n}. We will add n-1
edges. At the beginning, no vertex is marked.
While the sequence is not empty:
Mark the smallest unmarked vertex whose label does not appear in the
sequence (this always exists, since sequence only has length n-2).
Delete the first element of the sequence and draw an edge between
this element and the vertex you just marked. This adds one edge.
When the sequence is empty, there are n-2 edges, one for each 
element of the original sequence. There are two unmarked vertices,
including one isolated. Draw an edge between them, then stop.

Claim: this is a tree. To prove this claim, we only need to prove 
either that it is connected or that it has no cycle, since we already
know there are n-1 edges. We prove there is no cycle.
When we add an edge, we always do so between a marked vertex
and an unmarked one; we then mark the unmarked one. If there was a
cycle, that cycle would need to have at least one edge added with
both endpoints that are marked, which is not possible. That proves the
claim.

Since both algorithms are well-defined, there is a bijection between
n-ary sequences of length n-2 and the trees with n vertices.



4Note that the seemingly related problem of counting unlabeled trees
is much harder... to the extent that no closed formula is known to count
them. The only thing we know is an asymptotic estimate of the number
of trees with n vertices when n is very big; even then, the proof is
very hard and requires techniques that are far beyond the scope of
this class.

Counting labeled trees with a given degree sequence

From now on, we want to count trees with n vertices, labeled {1,...,n},
and vertex i having degree d. How many such trees are there?
We use Prüfer sequences to solve this problem. 

Observation: In the second algorithm, we always add an edge between
the vertex we mark and the vertex that appears in the sequence 
(assuming we mark both vertices in the last step). So the degree of
the vertex i is the number of occurrences of i in the sequence, plus 1. 

Corollary
Given positive integers d, d , ...,d  summing to 2n-2, there are exactly
      trees with vertex set {1,2,...,n} such that vertex i has degree d .

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 2.2.

Proof
Using the observation, we know that the number of such trees is the
number of sequences with (d-1) occurrences of i, for every i in
{1,2,...,n}. The number of sequences of length n with numbers all
distinct is the number of permutations, this is n! (=1×2×...×n). When a
number is repeated k times, there are k! fewer sequences: this is
because we accounted the k! permutations of these occurences of the
number.

Hence, the number of sequences of length n-2 with d-1 occurrences
of i is 
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Counting spanning trees

Nadia Lafrenière
    04/20/2022

For the complete graph, there is an easy way of answering: This is the total number
of trees with n vertices, as they are all subgraphs of the complete graph. Hence,
it is n  . 

However, the following question is much harder:

Question: Given any graph G (simple or not), how many spanning trees are subgraphs
of it?

Proposition
There are as many spanning trees in a graph G as in the graph obtained from G by
deleting all its loops.

Proof
Loops cannot belong to any tree, as they are cycles. So deleting them won't remove
any subtree.

Question: How many spanning trees does the complete graph with n vertices have? 

↤ ↦

4 trees passing through the outer cycle (of length 4).

However, we cannot use the same strategy for multiple edges, as there can be more
than one associated spanning tree. Here is an example:

Example: Count the number of spanning trees of the kite (K -e )

Finding a closed formula to count the number of spanning trees would be a lot to
ask for trees that don't have a specific structure. Instead, we see an algorithm
to answer this question easily.



24 trees passing through the diagonal, since we need to choose one edge from
each triangle.

So there are 8 spanning trees in the kite.

Example
In the kite, the contraction of the central edge gives the following:

In a graph G, the contraction of the  edge e=uv is the replacement of both
vertices u and v by a single vertex, by keeping all the edges incident to it, except
e. The resulting graph, G⋅e, has one fewer edge than G, and one fewer vertex.

↦

To count the number of trees, there are two cases. These two cases span all
the possibilities: either we use one specific edge or we don't use it. Of course,
we cannot be in both situations at the same time. Combinatorially speaking,
that means the total number of spanning trees is
    #(spanning trees using that edge) + #(spanning trees not using it).
If the latter seems easy to count in general, the former needs the introduction of
the following operation.

Proposition
The number of spanning trees of G, noted τ(G), satisfies, for any single edge
e, τ(G)=τ(G-e)+τ(G⋅e).

Proof
We already noted above that the total number of spanning trees is the sum of the
trees with and without edge e. The thing we need to prove is that τ(G⋅e) is the
number of spanning trees using edge e.
Start with T a spanning tree of G⋅e; T is connected to the new vertex created 
from the contraction of e. Replacing that vertex with the edge e
(and distributing the edges among the two vertices like in the G) gives a
spanning tree of G using e.
Also, from any spanning tree of G using e, we get a spanning tree of G⋅e by
contracting vertex G (i.e. the spanning graph is still connected and still has no
cycle).

This proposition will be the key to count, recursively, the number of spanning trees.
We could also benefit from some shortcuts, like the following proposition:
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That yields an algorithm to count the number of spanning trees in G:

- If G is disconnected, it has no spanning tree; if G has a single vertex,
it has only one spanning tree.
- Delete all loops in G.
- If G has no cycles of length at least 3:
  - The number of spanning trees is the product of the multiplicities of edges.
- Otherwise, choose a (multiple) edge e with multiplicity k, that is in a cycle of
length at least 3. The number of spanning trees is τ(G-e)+k τ(G⋅e).

Example
We count the spanning trees in the graph below:

As we did earlier with the kite, we consider deleting or contracting the central
edge.

In the last step, G-e has fewer cycles than G, and G⋅e has shorter cycles.
That means that the algorithm eventually terminates.

where G⋅e is the graph obtained by merging u and v and deleting {e,e,...,e}.

Proposition
If G has no loop and does not have cycles of length at least 3, its number of
spanning trees is the product of the multiplicities of the edges.

Proof
Since G has no loops nor cycles of length at least 3, all the cycles have length
2, i.e. they are multiple edges. At most one of them can appear in a given 
spanning tree. Also, at least one of them must appear: otherwise the graph 
would be disconnected. This is because these edges are all not part of a cycle 
that uses other edges. Hence, we have to pick exactly one edge per pair of
endpoint. These choices all being independent, we multiply their numbers.

Corollary
If there are k edges {e,e,...,e} between endpoints u and v in G, the number of
spanning trees of G is given by  

 τ(G-{e,e,...,e })+kτ(G⋅e),
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Since it has multiplicity 1, the number of spanning trees can be counted in this way:

Deletion

Contraction 30 spanning trees using that edge.

Deletion  No cycle of length ≥ 3
There are 2x3x4=24 spanning trees not
using top and diagonal edges. 

# spanning trees of 

Contraction 2x We need to count the number of
spanning trees of the multigraph on 
the left, and multiply it by 2.

Deletion  

Contraction 2x

# spanning trees of 

Total number of spanning trees
30+1(24+2(12+2x7)) = 106 spanning trees

There are 3x4=12 spanning
trees not using the right edge.

For each edge on the right,
there are 7 edges in the
contracted graph.

That process works for small trees, but the recursive procedure makes it very long
to do for large connected graphs. We will see next class a theorem to make this
computation efficient.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 2.2



where M  is the matrix obtained from M by deleting its i-th row and
j-th column.)

Example
L =




5 −2 −3 0
−2 5 −1 −2
−3 −1 8 −4
0 −2 −4 6


A =




0 2 3 0
2 0 1 2
3 1 0 4
0 2 4 0




L3,3 =




5 −2 0
−2 5 −2
0 −2 6


 det(L3,3) = 5 · (30− 4) + 2 · (−12) + 0 = 106

Just as we obtained last lecture, there are 106 spanning trees.

Math 38 - Graph Theory
Spanning Trees and Decomposition

We give a more efficient way of counting the number of spanning trees
in loopless graphs. As a second part, we are wondering if it is possible
to decompose a graph into multiple copies of the same tree.

Counting spanning trees, efficiently

Theorem

Nadia Lafrenière
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Last lecture, we counted the number of spanning trees using the
deletion-contraction process. That fell like a good process since it
allowed us to count (for the first time) the number of spanning
trees. However, the algorithm to do so has an exponential complexity
(i.e. the number of steps required to make it work might be as big
as (roughly)   ).
The following theorem gives an efficient computation for the number
of spanning trees.

Let G be a loopless graph and A be its adjacency matrix. Let L be
the matrix with l =-a and l =d(i), the degree of vertex i.
The number of spanning trees of G is any cofactor of L.

(Recall that the (i,j)-cofactor of the matrix M is computed by



2If you are interested in reading it, the proof can be found on pages
86-87 of the textbook.

Decomposition
Recall that a decomposition of a graph is a list of subgraphs in which
every edge appears exactly once. This definition raises the following
problem: When can we decompose a graph G into copies of H?

Example
Two copies of a self-complementary graph is a decomposition of a
complete graph.

Are these two conditions sufficient for graphs to decompose into multiple
copies of a graph? The following example will show this is not enough.

Proposition
If G decomposes into many copies of H, then 
1) The number of edges in H divides the number of edges in G.
2) The maximum degree of H cannot be greater than the maximum
degree of G.

Proof
1) Assume there are m copies of H in G. Then, the number of edges in
G is m times the number of edges in H.
2) Assume Δ(H)>Δ(G). So there is a vertex v in H, and that vertex
must appear in G as well. The copy in G may have more edges incident
to it, but cannot have fewer. So v in G has degree Δ(H), contradicting
the maximality of Δ(G).
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Example: Decomposition of the Petersen graph. The triangle (3-cycle)
satisfies conditions 1) and 2), but does not appeat in the Petersen
graph.
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The Petersen graph decomposes into multiples copies of the following
graphs:
- 1 copy of itself;
- 15 copies of an edge;
- 3 copies of either the H-graph, the E-graph or the T-graph;
- 5 copies of paths of length 3.

For the case of 5 edges:
- The Petersen graph is regular of degree 3, so no vertex can have 
degree 4 or 5 (remark 2).
- The shortest cycle in the graph has length 5. The graph cannot be
decomposed into cycles of length 5, because vertices would need to
have even degree.
- The graph cannot be decomposed into paths of length 5, since there
would be at most 6 vertices of odd degree (the endpoints of the
path.)
- So the smaller graph has no cycle, at least 3 leaves and maximal
degree at most 3. The possibilities are the following:

To decompose it into 5 copies of a graph, with 3 edges, there are 3
options:

By the proposition above, 1, 3, 5 and 15 are the only possible numbers
of edges that can appear in the smaller graphs. To prove the list
is exhaustive, we must show that the H-graph, the E-graph and the
T-graph are the only graphs with 5 edges that can occur in the
decomposition, and the same has to be true for the path of length 3
compared to other graphs of size 3.
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-The triangle is not possible since it does not appear in the Petersen
graph;
- The claw (star) is not possible because of the following proposition:

This proposition allows us to conclude with the only possible
decompositions for the Petersen graph.

Graceful labelings
In general, the problem of decomposing a graph into many copies of 
graphs is a very hard one. Even the easier problem of decomposing 
it into trees is hard, as shown by the following conjectures:

Proposition
A k-regular graph can be decomposed into copies of stars with k edges
if and only if the graph is bipartite.

?

*

Proof
<= If the graph is bipartite, consider one of the two independent sets
in the bipartition. Every vertex in this set has degree k, so that vertex
and the incident edges form a star with k edges. Also, every edge of
the graph appears in exactly one of these stars, since every edge has
exactly one endpoint in this independent set.
=> We prove the contrapositive: If a graph is not bipartite, it cannot be
decomposed into stars with k edges. Assume it is not bipartite, so it
contains at least one odd cycle. In this cycle, every other vertex must
appear as the center of the star; otherwise, there are edges that 
cannot appear in the decomposition (like the ones in red below).
Also, since every edge appears once, there cannot be two neighbouring
vertices that appear, because every vertex takes all k the incident
edges.  If two adjacent vertices appeared, there would be an edge
counted twice. So there cannot be an odd cycle in the graph to
decompose it into stars.

*

only one edge
left in cycle
(around the
pentagon)

?
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Example
All stars and paths are graceful.

Conjecture (Graceful Tree Conjecture - Kotzig, Ringel, 1964)
Every tree has a graceful labeling.

Theorem (Rosa, 1967)
If a tree T with m edges has a graceful labeling, then K   has a
decomposition into 2m+1 copies of T.

Conjecture (Ringel, 1964)
If T is a fixed tree with m edges, then K   decomposes into 2m+1
copies of T.

Note that despite multiple attempts to prove this conjecture, it is still
open. Most attempts to solving it focus on graceful trees.

Remark
To make it possible to define such a labeling, a graph must have at 
least as many edges as the number of vertices minus one (which is the
case of connected graphs, for example).

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 2.2

Definition
A graceful labeling of a graph G with m edges is a labeling of a graph
with the numbers {0,...,m} such that distinct vertices receive distinct 
labels and edges receive the difference of labels; the labeling is
graceful if all the numbers {1,...,m} appear on the edges of the graph.
A graph is graceful if it has a graceful labeling.

Exercise: Find a proof!

No graceful labeling

8?

Not an
iff statement



Math 38 - Graph Theory
Optimization and weighted graphs

Weighted graphs

Minimum spanning tree

Example
An internet provider wants to wire cable in a new housing development
and wants to reach every house. However, due to certain weather 
conditions and due to the distance between houses, the cost of
reaching houses might not be the same from every path. The graph
below illustrates the potential cost of every section: that is the weight
of the edges, and the houses correspond to vertices.
How can they reach every house at minimum cost?

Problem: Given any weighted graph, find the spanning tree with the
minimum weight, where the weight of a tree is the sum of the weights
of its edges.

A weighted graph is a graph with edges labeled by numbers (called
weights). In general, we only consider nonnegative edge weights. 
Sometimes, ∞ can also be allowed as a weight, which in optimization
problems generally means we must (or may not) use that edge.

We consider two problems, and use weighted graphs to solve them: The
first one is the problem of the minimal spanning tree (where minimal
refers to the weight on the edges), and the second one is the 
shortest path.

Nadia Lafrenière
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∞

To make sure they connect every house,
they must build a spanning tree. To find
the spanning tree with minimal cost, they
can use, for example, Kruskal's algorithm.
They have no incentive to create a cycle.



2Kruskal's algorithm: Given a connected weighted graph G=(V,E), find
its minimal spanning tree.

Idea: At every step, we have a forest H. We add edges from G to H
until H is a spanning tree. The subgraph always stay acyclic.
To ensure H is minimal, we consider edges to be added in increasing
order of their weight.

Example

has minimal spanning tree
of weight 9

Proof
We prove the following two things:
1) The result is always a spanning tree.
2) There can't be any spanning tree with smaller weight. 

Stop (spanning
tree)

Theorem (Kruskal, 1956)
In a connected weighted graph, Kruskal's algorithm constructs a
minimum-weight spanning tree.

Initialization: H has |V| isolated vertices (no edge). The edges of G
are sorted in increasing oder of their weight.
Iteration: Consider the next smallest edge of G. If adding it to H
reduces the number of components of H, we do so. (Otherwise,
it creates a cycle, so we do not add it).
Stop: When we get at the end of the list of edges, or when H is a
spanning tree, whichever comes first. 



31) We must show that the result is acyclic, connected and reaching
every vertex.
- It is acyclic, since we only add edges that reduce the number of
connected components. These edges cannot create cycles.
- Obviously, if we stop because the graph is a spanning tree, it is
connected and reaches every vertex. Otherwise, we stop because we
considered adding every edge; we did not add them only if they did
not reduce the number of components. So the number of components
in the forest is the same as in the original (connected) graph. Since
we started with all the vertices of G, a tree is always spanning.

2) We prove it by contradiction. Assume T is a spanning tree with
lower weight than H (obtained by the algorithm). They both have
the same number of edges (since they are spanning trees), so there
is at least one edge e in T but not in H. Conversely, there is an
edge e' of H that is not in T. Since T has lower weight than H, we
can choose e<e'. In fact, take the smallest such e. We considered e
before e' and did not add it to H. Necessarily, e would have created
a cycle in H, so there is a cycle in T (because e is the smallest edge
in T but not in H). A contradiction. So T=H, and H is the minimal
spanning tree.

Kruskal's algorithm is not the only algorithm that does so. See, for 
example, Prim's algorithm, where you grow a tree from one single
vertex.

Shortest paths
Given two vertices in a labeled graph, what
is the shortest path?

Dijkstra's algorithm gives all the distances
from a given vertex u to other vertices
in the graph.
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Observation: This cannot be done using a greedy algorithm.

Example
Shortest path from u to e

Theorem
Dijkstra's algorithm computes the distance d(u,x) for every vertex x
in a connected graph.

greedy = informed by
         local data

Initialization: The set of visited vertices is {u}, d(u,u)=0, the tentative
distance from u to x, t(x), is the weight of the edge between u
and x (∞ if it does not exist).
Iteration: Take the vertex x with shortest value of t(x) amongst the
non-visited vertices. The distance to u is d(u,x)=t(x).
"Visit it" by modifying t(y) for all its neighbors, by the minimum of
these:
- what t(y) was already; the tentative distance does not change
- d(u,x) + the weight of the edge xy; there is a shorter path

Stop when you visited every vertex (for a connected graph). 

Dijkstra's algorithm
We need a weighted graph, and we compute the minimum-weight path
from one specific vertex u to every other vertices. An edge that
does not exist is equivalent to an edge with weight ∞.
Idea: The distance d(u,v) is the weight of the edge between u and v
if they are adjacent. We give tentative distance d(u,w) for every
vertex w not adjacent to u, and that distance never increases during
the process.

With a greedy algorithm: d(u,e)=16? A (much) shorter path: d(u,e)≤ 8
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Sketch of proof
- Previously visited vertices cannot see their distance increase.
- When a vertex is visited, there cannot be a shorter path passing
through a non-visited vertex.

Example

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 2.3



In a graph, a matching is a subgraph with maximal degree 1 (so every
vertex is connected to at most one other vertex).

A maximal, but not
maximum matching

A maximum matching,
also a perfect matching

Example
In the complete bipartite graph K  , there exists perfect matchings
only if m=n. In this case, the matchings of graph K  represent
bijections between two sets of size n. These are the permutations
of n, so there are n! matchings.

- Perfect matchings can only occur when the number of vertices is
  even.
- That is not a sufficient condition, as shown by the claw.

Math 38 - Graph Theory
Maximum and perfect matchings

No possible perfect matching, since
the center vertex is saturated by
any edge.

A vertex that appears in a matching is saturated, otherwise it is 
unsaturated.
A perfect matching in a graph is a matching that saturates every
vertex.

Nadia Lafrenière
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Maximum matchings
A matching of a graph is maximal if no edge can be added. It is
maximum if no other matching of this graph has more edges than it.

Example

Maximal Maximum

   Perfect => Maximum => Maximal
In general, the converse is not true.

Let G be a graph and M be a matching of G. An M-alternating path is
a path of G that alternates between edges in M and edges not in M.
An M-augmenting path is an M-alternating path with both endpoints
unsaturated.

augmentation

Remark: When M is maximum, there is no augmenting path.

Can we transform a maximal matching into a maximum matching?

Example
Counting the perfect matchings in a complete graph.
- K  has no perfect matching if n is odd.
- Otherwise, it has (n-1)(n-3)...3⋅1 perfect matchings:

- Label the vertices 1,...,n
- Match vertex 1 with any of its neighbors; there are n-1 possible
  choices
- As long as there are still unsaturated vertices, match the 
  smallest unsaturated vertex with another one. The number
  of ways to do so is n-3, then n-5, ..., until there is only one
  way to do so.

M-alternating
path

⟼

⟼



3Theorem (Berge, 1957)
A matching M in a graph is a maximum matching if and only if the graph
has no M-augmenting path.

Proof
⇒ follows from the remark above
⇐ We prove the converse: if it is not maximum, it has an augmenting 
path. If M is not maximum, then there is a matching M' with more
edges.

Proof of the claim: That means that every vertex of H has degree at
most 2, and that cycles have even length.
The maximal degree of H is 2 by construction. At most, one vertex
can have one incident edge in M and one in M'.
If a cycle has odd length, then most edges belong to the same
matching, and there must be two edges belonging to the same matching
and incident to the same vertex. That contradicts the construction of
a matching.

We consider the subgraph H with edges that appear in exactly one of M
and M' (not in both).
Claim: components of H are all either even cycles or paths.
- Even cycles have as many edges from M as from M'. This is because
every endpoint can have at most one edge in M and one in M'.
- Since |M'|>|M|, there is at least one path in H with more edges of M'
than edges of M. This is a path that starts and ends with unsaturated
vertices of M, so this is an M-augmenting path.

problem



4Matchings in bipartite graphs

Example: Job assignments
If there are m jobs and n people, not all qualified for all the jobs,
can we always fill all the jobs?

The edges are between a job and
a qualified person for that job.

(The jobs cannot all be filled in this example).

people

jobs

Theorem (Hall's Theorem, 1935)
Let G be a bipartite graph with the independent sets X and Y
forming a partition of the vertices.
G has a matching that saturates every vertex of X if and only if
the neighborhood of every S ⊆ X has order at least |S|.

Consequence: Stable marriages. Watch the video:
https://www.numberphile.com/videos/stable-marriage-problem

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 3.1



Math 38 - Graph Theory
Covers, matchings and independent sets:
Min-max theorems

Recall from last class that a matching is a subset of edges such that
no vertex appears twice as endpoints. We compare these notions with
those of edge covers and vertex covers.

A vertex cover is a set S of vertices of G that contains at least one
endpoint of every edge of G. The vertices in S cover G.

Examples

A cover of K has at 
least size n-1.

Nadia Lafrenière
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An edge cover is a set of edges of G that contains as endpoints
every vertex of G.

The minimum number of
edges in an edge cover 
is #V/2.

Edges
Edges

At most one edge per vertex

Vertices
At least one edge per vertex
At least one vertex per edge

Vertices At most one vertex per edge

Items PropertySets
Matchings

Edge covers
Vertex covers
Independent set

When are:
- Vertex covers and independent sets equal?
- Matchings and edge covers equal?



2Matchings and vertex covers

From the table above, it might seem that matchings and vertex covers
are not related. However, consider a matching. In a vertex cover, every
edge of the matching has to be covered by one of its endpoint. So the
edge uv has either u or v (or both) in the vertex cover. Also, u (and
v) cannot belong to more than one edge in the matching. So we have
the following proposition:

Smallest vertex cover:
size 3.

Largest
matching:
size 2.

Proposition
If M is a matching of G and S is a vertex cover of the same graph G,
|M|≤|S|.

Smallest vertex cover:
size 3.

Largest
matching:
size 3.

Remark
The statements
  "For any matching M and any vertex cover S, |M|≤|S|" 
and
  "The maximum size of a matching is always at most the minimum size
   of a cover"
are equivalent.

In the last example, the matching and the vertex cover have the same
size (|M|=|S|). Of course, one can get smaller matchings and larger 
vertex covers, but the first example shows it is not possible to get
a matching and a vertex cover of the same size. 
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Theorem (König, Egerváry, 1931, independently)
If G is a bipartite graph, then the maximum size of a matching in G is
equal to the minimum size of a vertex cover in G. 

Smallest vertex cover:
size 3.

Largest
matching:
size 3.

Also, being a perfect matching is not enough, as shown by this
example with just 4 vertices.

Remark
This is not an if and only if statement. For example, the graph below
contains a triangle, but has a matching a vertex cover of the same
size.

Proof
Available as, either:
 - the proof of Theorem 3.1.16 in the textbook.
 - the short proof of Romeo Rizzi (the paper is on Canvas).
The first one is a proof by construction, the second one is a proof
by contradiction.

Complete graphs have vertex covers
of size n-1 and maximum matching
of size 

Remark
The theorem above is an example of a min-max relation: that means 
that solving an optimization problem calling for the minimum of 
something in a graph is equivalent to solving an optimization problem
for the maximum. Here: the maximum matching and the minimum vertex
cover. We will see more of them over the term.
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Optimization problems

Edges
Edges
Vertices
Vertices

Sets Items

Vertex covers

Matchings

Edge covers

Problem

Independent set

This is defined as the independence number

Notation
α'(G)

α(G)
β(G)

β'(G)
Finding maximum
Finding minimum
Finding minimum
Finding maximum

As an example on how to use these notations,
König-Egerváry theorem states that α'(G)=β(G)
for bipartite graphs. For any graph G, α'(G)≤β(G).

König-Egerváry If
bipartite

(below)

Gallai's
Theorem (below)Lemma (α-β)

In a graph G=(V,E), S is an independent set if and only if V-S is a
vertex cover. Hence, |V|= α+β.

Proof
Let S be an independent set, meaning there is no edge between two
vertices of S; every edge has at least one endpoint in V-S. That
means that V-S is a vertex cover.
Conversely, if S' covers G, every edge has at least one endpoint in
S', so V-S' is independent.

size of maximum matching
+ minimum edge cover

Theorem (Gallai, 1959, α'-β')
Let G be a graph with n vertices, none of them being isolated. 
Then, α'(G)+β'(G)=n.

Sketch of proof
2 steps:
1. From a maximum matching (of size α'(G)), construct an edge cover
  of size n-α'(G). That implies that n-α'(G)≥β'(G).
2. From a minimum edge cover (of size β'(G)), construct a matching
   of size n-β'(G). That implies that α'(G)≥ n-β'(G).
These two steps prove that α'(G)+β'(G)=n.
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Corollary (König, 1916, α-β') 
If G is a bipartite graph with no isolated vertex, then the size of a 
maximum independent set is the size of a minimum edge cover.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 3.1



Math 38 - Graph Theory
Connectivity
Cuts and connectivity

A vertex cut (or separating set) is a subset of vertices S such that
G-S has more than one component.

The connectivity of G, κ(G), is the minimum size of a separating set,
if it exists, or n-1.
A graph is k-connected if its connectivity is at least k.

Examples

Disconnected = connectivity 0
Connected = 1-connected
Cycles of length at least 3 have connectivity 2
Petersen graph has connectivity 3.
Complete graph K  has connectivity n-1.
Complete bipartite graph K   has connectivity min{n,m}.
By convention, we say the graph with one vertex has connectivity 0.
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Proposition
The connectivity of a connected graph is at most its minimum degree. 

Remark
The connectivity of a connected graph is not at least its minimum
degree.

Minimum degree 2, but there is a 
cut-vertex => connectivity 1.

Proof
One can isolate a single vertex by removing all the vertices around it.

Nadia Lafrenière
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2Example
The hypercube H  has connectivity k.

Of course, since it is k-regular, it has connectivity at most k.
We can prove by induction it has connectivity at least k:

Example: Harary graphs
Harary graphs H  are graphs with n
vertices and     edges, 2≤k<n, being
as regular as possible.
They have connectivity k:
- k is the minimum degree of H

There is a  proof in the textbook
that it has connectivity at least k.

Theorem (Harary, 1962)
Let k>2. The minimum number of edges in a k-connected graph with
n vertices is 

Proof
This is an example of an extremal problem:
- There cannot be fewer edges in a k-connected graph. Since G is k-
   connected, the minimum degree is at most k. Then, there must be at
   least    edges.

- Example of k-connected graphs with n vertices and     edges are
  the Harary graphs.

Remember the problem
with c cards and s 
students? If c or s is
even, H  is a solution to
   it!
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What if we instead consider the number of edges we need to remove
to disconnect a graph?

Examples

Let S⊆V be a vertex subset of a connected graph G. Let [S,S] be the
set of all edges with one endpoint in S and one in S. Then [S,S] is 
an edge cut.

Edge cut Disconnecting set

Edge cut ⇔ Minimal disconnecting set

separating ≠ disconnecting

Complete graphs have edge-connectivity n-1. You can prove it!

↦

κ(a)=1
κ'(a)=2 κ(a)=κ'(a)=4

↦

↦ ↦

Not an edge cut

Edge-connectivity

Definition
A disconnecting set is a subset of edges F ⊆ E such that G-F has at
least 2 components.
The edge-connectivity is the minimum size of a disconnecting set, and
is noted κ'(G). A graph is k-edge-connected if it has edge-
connectivity at least k.



Example of inequalities

Theorem (Whitney, 1932)
If G is simple, then κ(G)≤ κ'(G)≤ δ(G). In words: vertex-connectivity
is at most edge-connectivity, which is always at most the smallest
degree.

κ(G)<κ'(G)=δ(G) κ(G)=κ'(G)<δ(G) κ(G)<κ'(G)<δ(G)

Connection to vertex-connectivity 4

Proof
We first prove κ'(G)≤ δ(G). Let v be a vertex with degree δ(G).
The edge cut for the set {v} has δ(G) edges, so an edge cut with
δ(G) edges exist, and the minimum edge cut has size at most δ(G).

We also need to prove κ(G)≤ κ'(G). To do so, we start with a
minimum edge cut, and construct a vertex cut with at most the same
size. If this process is always possible, that proves the desired
inequality.

Consider a minimum edge cut [S,V-S]. There are two cases:
- If every vertex of S is connected to every vertex of V-S, then
  #[S,V-S]=|S||V-S|≥ |V|-1. Also, by definition, κ(G)≤|V|-1.
  So κ(G)≤ |V|-1 ≤ #[S,V-S]=κ'(G) (the last equality is because the
  minimum edge-cut is the minimum disconnecting set.
- Otherwise, there is one vertex x in S and y not in S that are not
  adjacent. We construct a set of vertices T:

- All neighbors of x in V-S.
- All vertices of S\{x} that are adjacent to vertices in V-S.



Proposition
Let G be a connected graph. Then, an edge cut F is minimal if and
only if G-F has exactly two components.

With your study group, try to agree on an explanation of why this is
true.

No edge is counted twice in this list, because x is not in T.
Since every edge in this list is in the edge cut, then |T|≤ #[S, V-S],
and κ(G)≤ κ'(G).

Then, T is a vertex cut: There is no way to go from x to y without
passing through one edge of T, so G-T is disconnected. We need
to show that T has at most #[S, V-S] vertices.
For each vertex t of T:
- If t is a neighbor of x, then xt is in the 
  edge cut.
- If t is in S, then t is adjacent to at least
  one vertex u in V-S. Then ut is in the edge cut.

Remark
If we replace minimal by minimum, then the statement becomes
false: G-F can have two components while there are edge cuts with
size smaller than |F|.

5



Theorem
If G is a 3-regular graph, then κ(G)=κ'(G).

Edge connectivity for regular graphs

That process breaks all the paths between H and J, so the deleted
edges form an edge cut. Also, the size of that edge cut is |S|, which
proves the statement.

Proof
We already know that κ(G)≤ κ'(G), in general. To prove the statement,
we only need to show the reverse inequality (≥), that is, from a 
minimum vertex cut, create an edge cut of the same size.
Let S be a minimum vertex cut, and let H and J be two components of
G-S. Since S is minimum, every vertex of it has a neighbor in H and a
neighbor in J. Also a vertex cannot have at least two neighbors in both
H and J since G is 3-regular. For each vertex v in S, delete the edge
from v to the component in which it has only one neighbor (if there is
one neighbor in H, one in J and another one (in S for example),
delete the edge to H). 

6

H J

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 4.1
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Connectivity and paths

Blocks
Is a connected graph with no cut-vertex 2-connected?

Connectivity 0 Connectivity 1

Definition
A block of a graph G is a maximal connected subgraph that has no
cut-vertex.

Proposition
Two blocks in a graph share at most one vertex.

We keep looking at the interconnections between edge-connectivity and
vertex-connectivity. We also consider what it means for cycles and 
paths. 

Properties
- Isolated vertices, as well as "isolated edges" (isolated copies of K)
  are blocks.
- A cycle is always 2-connected, so it is always inside the same block.
- Since the only edges that are not in cycles are cut-edges, an
  edge with its two enpoints is a block if and only if it is a cut-edge.
- Blocks in a tree are edges (along with their two endpoints).
- Blocks in a loopless graph are its isolated vertices, its cut-edges
  and its 2-connected components.

Proof
By contradiction. If two blocks A and B share vertices u and v, they
are connected components with no cut-vertices inside. They are also
maximal, so if we extend their size, we will be creating a cut-
vertex.

Nadia Lafrenière
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Proposition
If two blocks share a vertex, it is a cut-vertex.

2-connected graphs
Two paths from u to v are internally disjoint if they have no common
internal vertex.

Theorem (Whitney, 1932)
A graph with at least three vertices is 2-connected if and only if
there exist internally disjoint u,v-paths for each pair {u,v}.

Since there is a path from u to v in A and one
in B (because blocks are connected), there is a
cycle containing u and v, and A and B form
together a 2-connected component. Hence, they
are in the same block.

Proof
⇐ Since there are at least 2 disjoint u,v-paths for every pair {u,v},
  u and v cannot be separated by removing one vertex. This is true
  for all {u,v}, so the graph does not have connectivity 1. It must
  have connectivity at least 2, and is hence 2-connected.
⇒ By induction on d(u,v), the distance between u and v.
  Base case: u and v are adjacent. Since the graph is 2-connected,
  it is also 2-edge-connected, and removing edge e={u,v} lets the 
  graph connected, which means there is a path between u and v
  avoiding e. 
  Induction hypothesis: If distance is k=d(u,v), there exists two
  internally disjoint uv-paths.
  Induction step: Let u and v be at distance k+1, and let P be a
  uv-path of (minimal) length k+1. Let w be the vertex on P at 
  distance k of u, so w is adjacent to v, and P' be that portion of
  P.
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or

Menger's theorem

Let κ(u,v) be the size of a minimum uv-cut.

Proposition
For u and v vertices of G, κ(u,v)≥ κ(G).

Proof
A uv-cut makes the graph disconnected, so the connectivity is at most
the size of a uv-cut.

Corollary
For a graph with at least three vertices, the following conditions are
characterization of 2-connected graphs:
(A) G is connected and has no cut-vertex.
(B) For every pair of vertices {u,v}, there are internally disjoint u,v-
    paths.
(C) For every pair of vertices {u,v}, there is a cycle through u and v.

Given two vertices u and v, a uv-cut is a set of vertices S
such that G-S has no uv-path.

By induction hypothesis, there exist two internally disjoint uw-paths,
P' and Q'.
If Q' contains vertex v, let Q be the portion from u
to v in Q'; then Q is a uv-path that is internally disjoint from P.

Otherwise, consider G-w. It is connected since there is no cut-
vertex. So there is a path R between u and v avoiding w. If it 
avoids P or Q, R is internally disjoint from it. Otherwise, let x be
the last vertex of R that also belongs to either P
or Q.  If x belongs to Q, then P is disjoint 
from the part of Q between u and x and from the 
part of R between x and v, which is a path from u to v (disjoint
from P). If x belongs to P, the argument is similar.



4Let λ(u,v) be the maximum number of internally disjoint uv-paths.

Proposition
For u and v vertices of G, κ(u,v)≥ λ(u,v).

Proof
We need to delete at least one vertex per path, and no vertex belongs
to two paths.

Minimal uv-cut, size 4

Minimal wx-cut, size 3

In fact, one can get a much stronger result:
Theorem (Menger, 1927)
If u and v are not adjacent, the minimum size of a uv-cut is the
maximum number of internally disjoint uv-paths.

Proof (optional): read in the textbook, proof of theorem 4.2.17.
We will see another proof with the Ford-Fulkerson algorithm next
week Monday.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Sections 4.1 and 4.2
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Network and flows

We progress in our journey to analyzing flow in a network. We first
introduce line graphs (and digraphs) to express dual problems, and 
then move on to networks, flows and capacity.

Line graphs
Goal: Introduce a way to translate edge Menger's theorem and other
results on paths in terms of edges.

Let G=(V,E) be a graph. Its line graph L(G) has vertices E, and
edges of L(G) exist for two edges of G (vertices of L(G)) if they
are incident to the same vertex in G.

Nadia Lafrenière
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The same can be done with digraphs. In this case, there is a directed
edge from e in E to f if there is a path in D=(V,E) from e to f.

Theorem
If u and v are distinct vertices in a graph (or digraph) G, then the
minimum size of an uv-disconnecting set (of edges) equals the 
maximum size of pairwise edge-disjoint uv-paths.

Properties
- The number of edges in L(G) is
- In general, G ≆ L(G).
- For a graph with no isolated vertex, G is disconnected iff L(G) is.



2Sketch of the proof
Use Menger's theorem with L(G).
Deleting an edge in G is equivalent to deleting a vertex in L(G). So
the minimum size of a uv-disconnecting set in G is the minimum size of
a uv-cut in L(G). By Menger's theorem, this is the maximum number of
internally disjoint uv-paths in L(G), which correspond to edge-disjoint
paths in G.

Corollary
The edge-connectivity of a graph (or a digraph) is the maximum 
number k such that there is at least k edge-disjoint uv-paths for all
pairs of vertices {u,v}.

Maximum Network Flow

A network is a directed graph with a nonnegative capacity c(e) on each
edge e. A network has distinguished vertices: a source s and a sink t.

A flow is feasible if
- 0≤f(e)≤c(e) for every edge e.
- f⁺(v)=f⁻(v) for every vertex except source and sink

    Capacity constraint

Conservation constraint
capacity
flow

The value of a flow is the net flow of the sink (f⁻(t)-f⁺(t)).
A maximum flow is a feasible flow of maximum value.

Value 1 Value 2

Maximum flowMaximal flow

A feasible
flow

A flow f in a network assings a value f(e) to edge e. For vertices,
we write f⁺(v) for the total flow of the edges leaving v and f⁻(v)
for the flow entering v.
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To increase the value of a maximal, but not maximum flow, we use
f-augmenting paths. P is an f-augmenting path if
- it is going from source to sink.
- when P follows e in the forward direction, f(e)<c(e). 
Let ε(e)=c(e)-f(e).
- when P follows e in the backward direction, f(e)>0. Let ε(e)=f(e).
The tolerance of P is the minimum value of ε(e) over edges in P.

Tolerance 1

Lemma
If P is an f-augmenting path with tolerance z,
then we can create a flow f' with value
value(f)+z in the following way:
- if e not in P, f'(e)=f(e)
- if e is forward in P, f'(e)=f(e)+z
- if e is backward in P, f'(e)=f(e)-z.

Proof
We must prove that f' is a flow (capacity and conservation
constraints) and that the result has value z higher than the value of f.
Capacity: If e is forward in P, then the tolerance of e was higher than
         z, so he can increase its flow by z. 
         If e is backward in P, then its flow is reduced by z, and it
         originally was higher than z, so it is still nonnegative.
Conservation: if v is in P (but is neither s nor t), it has either two
            in-edges (one forward, one bacward), two out-edges 

    also one each way), or one in- and one out-edge (in
    the same direction). 
    If the two edges are entering v, the flow for the e,
    the forward edge, is increased by z, and the flow for e'
    is decreased by z, so the entering flow is unchanged, and
    the conservation property is maintained.
    The case of two out-edges is similar, as the exiting 
    flow is decreased by z for the backward edge e, and
    increased by z for e'.



4If the flow is forward for the two edges, one is 
entering and one is leaving, and they are both increased
by z. Hence, f'⁺(v)=f⁺(v)+z=f⁻(v)+z=f'⁻(v).
If the flow is backward for both edges, the proof is
similar, as the flow is decreased on both edges.

In all cases, the conservation and capacity constraints are satisfied, so
the flow is feasible.

The flow is increased by z: P ends at the sink. So P is entering the 
sink, and f'⁻(t)=f⁻(t)+z and f'⁺(t)=f⁺(t) Therefore,
value(f')=value(f)+z.

Source/sink cut

Capacity 2 Capacity 4

Teaser for next class...

Theorem (Max-flow Min-cut, Ford-Fulkerson, 1956)
The maximum flow in a network is the minimum capacity of a source/
sink cut.

Given a partition of the vertices in a network with source s and sink
t, consider a partition of the vertices into a source set S 
(containing S) and a sink set T (with t). A source/sink cut is an edge
cut [S,T]. Its capacity, cap(S,T), is the total capacity of the edges
from S to T. 

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Sections 4.2, 4.3
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Max-flow min-cut theorem

Recall from last lecture the following theorem (not yet proved):

Our goal for today is to prove it.

Theorem (Max-flow Min-cut, Ford-Fulkerson, 1956)
The value of a maximum flow in a network is the minimum capacity of
a source/sink cut.
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Proposition
Let f be a feasible flow. Any source/sink cut has capacity at least
value(f).

Capacity 2

Proof
Consider a source/sink cut [S,T].
Recall that the capacity of the cut is the total capacity of the edges
from S to T. For each edge e in [S,T], f(e)≤c(e).
Also, every path from the source to the sink uses edges from S to T;
otherwise, it contradicts the fact that [S,T] is a cut.
Finally, the value of a flow on a path cannot be higher than the 
capacity of any edge of the path. Since every path passes through
[S,T], every path has maximum capacity that of the edge(s) it uses
from the cut.
Hence, the total capacity of the cut is at least the value of the flow.

value(f) ≤ capacity([S,T]).

We have that, for any flow f and any source-sink cut [S,T],



2That means that if we find a flow with value k and a cut with 
capacity k in the same network, the flow is necessarily maximum and the
cut is necessarily minimal.

Max-flow: Ford-Fulkerson algorithm

Algorithm to increase the value of a flow, if possible

Value 1 Value 2
Maximum flow

Value 0

Just as in Dijkstra's algorithm, Ford-Fulkerson's algorithm relies on
the principle of visiting and reaching vertices. The goal is to find
a maximum flow and a minimum cut.

Input: A feasible flow f (can be the flow that has 0 on every edge)
Output: An f-augmenting path or a cut with capacity value(f)

2 sets of vertices that we update: S (source set) and R (reached).
First, R={s} and S is empty.

Iteration: As long as R≠S, and t is not in R.
Choose v in R-S.
 - For each edge vw with f(vw)<c(vw) and w∉R, add w to R.
    For w, record that you reached it from v.
 - For each edge uv with nonzero f(uv) and u∉R, add u to R.
    For u, record that you reached it from v.
After visiting all the edges incident to v, add v to S.

If t is reached, we found an augmenting path. Return it (using the 
recorded vertices). If R=S, there is no possibility of f-augmenting
path, so [S,V-S] is a source-sink cut.



3To get a maximum flow:
Start with the zero flow, and use the former algorithm to find an
augmenting-path. When you get a cut, the flow is maximal.

Flow
Capacity
Visited vertices (S set)
Reached vertices (R set)
Or alternatively

augmenting-path
(s, u, w, t)

Starting with a
different flow:

Max-Flow Min-Cut Theorem

Sketch of proof
The key is to use the algorithm, starting with any feasible flow.
- If it terminates with t, we found an augmenting path: all the edges
   going forward are not used at full capacity, and all the edges
   going backward have nonzero flow. This means we increase the flow
   by the tolerance of the augmenting path.
- If it terminates with a cut, the flow is maximal because the edges
   leaving S are at maximal capacity.

Theorem (Max-flow Min-cut, Ford-Fulkerson, 1956)
The value of a maximum flow in a network is the minimum capacity of
a source/sink cut.

augmenting-path
(s, v, x, t)

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 4.3
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Graph colorings

Recall from the very first lecture the following problem:

Vertices: Subjects
Edges: If someone takes both subjects,
i.e. eventual scheduling conflicts. 

Schedule:
1. History-English-PE
2. Chemistry
3. Math

Chemistry
Math

English History

Physical
 Education

Scheduling and avoiding conflicts
My high school used to have a very long exam sessions at the end of
the year, and there were still some conflicts. I wish the administrators
knew graph theory...

Definition
A k-coloring of a graph G is a labeling of the vertices using labels
from a set of size k (called colors, even though the labels can be
numbers, for example).

The vertices of one color form a color class.

A coloring is proper if no two adjacent vertices have the same label.
A graph is k-colorable if it has a proper k-coloring.
The chromatic number χ(G) is the least k such that G is k-colorable.

Scheduling with no conflicts is equivalent to
coloring.
If we want to use the minimum time, we 
should use as few colors as possible.

In a proper coloring, every color class is an independent set. The
chromatic number is the smallest number of independent sets that
partition the vertices of a graph.

Nadia Lafrenière
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Intuitive definition:
A proper coloring of a graph is a partition
of the vertices into independent sets.



2Example
The Petersen graph has chromatic number 3:
- It is not 2-colorable, because its vertices cannot be divided into
   two independent sets; it would otherwise be bipartite.
- It is 3-colorable, as shown on the right.

Notice that the chromatic number is an extremal problem:
we need to show it is minimal and that a proper coloring
exists.

Colorings for non-simple graphs

Optimality
A graph G is k-chromatic if k=χ(G); a proper k-coloring is then an
optimal coloring.

If χ(H)<χ(G)=k for every subgraph H of G, then G is k-critical or
color-critical.

k=3: The 3-critical graphs are the
smallest graphs that are not bipartite:
these are the odd cycles.

Not 3-
critical

Examples

k=1

k=2

Graphs with loops do not admit proper colorings: a vertex that is
incident to a loop could not be colored.

Every loopless graph can be colored: a trivial coloring where every
vertex has a distinct color would work.

Multiple edges don't change anything to colorings, as two adjacent 
vertices cannot be colored the same color regardless of the number of
edges between them.



3No general characterization of 4-critical is known.

First bounds on the chromatic number
The clique number of a graph, written ω(G), is the maximum size of a 
clique in G. (Recall that a clique is a complete subgraph).

Also, recall that the independence number, α(G), is the size of a
maximum independent set.

Proposition
For every graph G=(V,E), χ(G)≥ω(G) and χ(G)≥|V|/α(G).

Proof
If there is a clique of size k, the k vertices in the clique must be of
different colors.
For the second inequality, rewrite it as χ(G)α(G)≥|V|. χ(G) is the
number of color classes, and α(G) is the maximum size of a color class.

The chromatic number is not necessarily the size of the maximal clique:
Maximal clique has size 2
Chromatic number is 3

Example: Mycielski's construction
From a simple graph G, construct a graph G' in the following way:
Let H and H' be two copies of G, but delete all edges from H'. If
vertices u and v are adjacent in G, draw an edge between u in H and
v' in H' (the copy of v in H'). Add an extra vertex x and connect it
to all the vertices in H'.

Notice that u and u' are never adjacent.
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If G has chromatic number k, then G' has chromatic number k+1:
The colors in H and in H' can be the same. In G, u and v can have
the same color if they are not adjacent. Hence, u and v' (as well as
v and u') are not adjacent in G', so they can have the same color.
Hence x is the only vertex with a new color added.
So graphs obtained by iterating this process can have arbitraty large
chromatic number.
Question: What is the clique number of a graph obtained with the
Mycielski's contruction?

Mycielski's construction is used to build triangle-free graphs with
arbitrary large chromatic numbers:

≅

Greedy coloring algorithm

- Order the vertices {1,2,...,n}. We will color the vertices using numbers
   {1,2,...,n}.
- For every vertex (in order), label it with the smallest color not
  already in use in its neighborhood.

Example

If we start from a triangle-free graph, the Mycielsky construction is
triangle-free.
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Proposition
The chromatic number is at most Δ(G)+1.

Proof
The greedy algorithm described above yields a proper coloring. In the
worst case, all neighbors of one vertex have distinct color, and we 
must add a color. When this happens, the number of colors is one
more than the number of neighbors; that is at most Δ(G)+1.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 5.1.

In this case, it is 
actually minimal. This
graph cannot be colored
with fewer than 4 colors.

The coloring does not always use the minimum number of colors:
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Bounds on the chromatic number

Last class, I introduced proper colorings of graphs, and the chromatic
number. We also looked at some bounds on the chromatic number,
and we keep exploring bounds on the chromatic number today. 

These bounds are easy to check, but they are not the best possible.

Examples and special cases

Another upper bound

Theorem (Brooks, 1941)
If G is connected, and is not the complete graph nor an odd cycle,
χ(G)≤Δ(G).

So far, we know:
- The chromatic number can be bounded in terms of the independence
  number and the clique number: χ(G)≥ω(G) and χ(G)≥|V|/α(G).
- The chromatic number can be bounded in terms of the maximum
  degree: χ (G)≤Δ(G)+1. 
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If Δ(G)=0, then G has 1 vertex (because it is connected), and is thus
the complete graph. So no graph in this case satisfies the hypotheses
of the theorem.

If Δ(G)=1, then G has 2 vertices, and this is again the complete graph.

If Δ(G)=2, G is either a cycle or a path. Open paths and even cycles
are bipartite, so their chromatic number is 2, which also is the maximum
degree. Odd cycles are excluded from by hypothesis of the theorem.

Complete graphs don't satisfy the inequality, as their chromatic number
is one more than the maximum degree (every vertex must have
different colors).
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Not complete, maximum degree is 0.
Chromatic number is 1.

Example: Coloring the Petersen graph using the greedy algorithm

Proof of Brooks' Theorem
We already inspected the case where the largest degree is at most 2,
so assume Δ(G)=k is at least 3.

If G is not k-regular:
Then, there is a vertex v with degree less than k. Let T be a
spanning tree in G (which is possible since the graph is connected).
We will use this spanning tree for ordering the vertices. The goal is
to find the right ordering for the vertices, and then apply the greedy
algorithm from last lecture.
- Number vertex v with n (last vertex to be colored).
- Label the other vertices in decreasing order on paths leaving v in
  T.
- Color the vertices using the greedy algorithm from last lecture.
Every time we color a new vertex u (that is not v), there are at most
k-1 of its neighbors that have been previously colored, so k colors are
enough.

The hypothesis that the graph is connected is needed to avoid the
case of having only isolated vertices.

The Petersen graph is 3-regular.
It satisfies the hypothesis of the theorem,
so it must have maximum degree 3. That
means there exists an ordering of the vertices
that allows it.

Notice that, whenever a graph with n vertices is not the complete
graph, the chromatic number is at most n-1: Since there is at least
one pair of non-adjacent vertices in a non-complete graph, they
can be the same colors. So n colors are never needed if the graph
is not complete.



3For the last step, we know that v has at most k-1 neighbors, so in
the worst case, a k-th color will be necessary to color it.
In total, k colors are enough if the graph is not k-regular.

A similar process holds if the graph is k-regular, but there are two
cases:
- There is a cut-vertex v. Then, G-{v} is disconnected, and each
  component can be colored with k colors. Place the colors in the 
  components so that vertices incident to v have the same color in
  both components.
  Then, v can be colored using any other color, so G is k-colorable.

no edge

- There is no cut-vertex, meaning that G is 2-connected.
  If G has a vertex v with two neighbors that are not adjacent
  u and w such that G-{u,w} is connected, we can use a 
  similar argument. We label u and w by 1 and 2, and create a 
  spanning tree in G-{u,w}. Starting from v, we label the vertices in
  decreasing order and obtain a proper k-coloring of G because the
  last vertex has two vertices (u and w) colored the same. 
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Subgraph, cliques and chromatic number

I claim there is always such a triple of vertices when G is 2-connected
and k-regular, with k≥3. (The details of this are in the textbook.)

Proposition
If H is a subgraph of G, χ(H)≤ χ(G). 

Proof
All the edges of H are in G, so the vertices of G cannot be colored
with fewer than χ(H) vertices (however, if we add edges, they might
need more colors). 

Proposition
Every k-chromatic graph has at least   edges.

Proof
Consider an optimal coloring of the graph. Since it uses the minimum
number of colors, there is at least one edge connecting two color
classes; otherwise, there are two classes (blue and red) with no edges
between the two classes, and all the red vertices can be colored blue.
Hence, we need at least one edge per pair of colors, that is 
edges.

This is achieved by complete graphs K .

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001.
Sections 5.1 and 5.2

This is similar to the proposition we had in last lecture: χ(G)≥ω(G).
However, cliques are not needed to have large chromatic number (as
exhibited by the graphs build using Mycielski's construction).
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Chromatic polynomial

Notation
Given a graph G, the value χ(G;k) is the number of proper colorings of
G with k colors.

The chromatic polynomial of G is the polynomial χ: k↦χ(G;k).

Computation of the chromatic polynomial
A naive algorithm

Proposition
Let p(G) be the number of partitions of the n vertices of G into r
independent sets. Then, the chromatic polynomial of G is

Examples
- When G is the complete graph with n vertices, χ(G;k)=k(k-1)...(k-n+1).
  This number is also    n!
- When G is the graph with n vertices and no edge, χ(G;k)=k .
- If T is a tree with n vertices, χ(T;k)=k(k-1) .
- If P is a path with n vertices, χ(T;k)=k(k-1) .

n�

r=1

pr(G)

�
k

r

�
r! =

n�

r=1

pr(G) k · (k − 1) · (k − 2) · · · (k − r + 1)

The problem: Counting the number of proper colorings of a graph G
with k colors.
- If χ(G)>k, then this number is 0.
- If χ(G)<k, we must first choose which colors will appear, and then
count the number of colorings with these colors. 

This is a unitary polynomial in the variable k of degree n, i.e. the
leading term is k .
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2Proof
Given a coloring of G, the color classes partition the vertices of G
into independent sets. If we have exactly r independent sets, there
are   r! ways of coloring them with r colors. Also, the number of
color classes can be any number between 1 and n.
As for the maximum degree, it will happen when r is maximal. Since
there is exactly 1 partition of the vertices into n independent sets (of
size 1), the leading term is k .

Example
Computing the chromatic polynomial of the cycle of length 4.

Hence,

k(k-1)+2k(k-1)(k-2)+k(k-1)(k-2)(k-3)
= k(k-1) (1+2(k-2)+(k-2)(k-3))
= k(k-1) (k²-3k+3) 

Chromatic recurrence / Deletion-contraction

Notice that here, unlike with spanning trees, we may delete multiple
edges at every step.

Theorem
If G is a simple graph and e is an edge of it, then
χ(G;k)= χ(G-e;k)-χ(G⋅e;k), where ⋅ is the contraction operation used
for counting spanning trees.
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Example

= k(k-1) -k(k-1)(k-2) = k(k-1)(k²-3k+3)

Proof
The two endpoints of e cannot be colored with the same color. Hence,
the number of proper colorings of G is the number of proper colorings
without this edge, except those where the two endpoints are colored
with the same color.

Proposition
The chromatic polynomial of the cycle of size n is (k-1) +(-1) (k-1).

Proof
We proceed by induction.
Base case: n=2. This is the complete graph (plus a multiple edge), so
the chromatic polynomial is k(k-1). This is equal to (k-1)²+(k-1).

Induction step: Assuming the chromatic polynomial of the cycle of
length n is (k-1) +(-1) (k-1), we want to prove that that of the
cycle of length n+1 is (k-1) +(-1) (k-1). 

Using deletion contraction,

= k(k-1) -((k-1) +(-1) (k-1))
= (k-1)  + (-1) (k-1)

Induction
hypothesis

Sketch of proof
We use the recurrence χ(G;k)= χ(G-e;k)-χ(G⋅e;k) and induction on the
number of edges. We do the proof on connected graphs.
When there is one edge, χ(G;k)= k²-k. 

Proposition
Let G=(V,E) be a graph. The second term of χ(G;k) is -#E k .
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One last remark

Induction step: G has one more edge than G-e, and the same
number of vertices. By induction hypothesis, the second term of
χ(G-e;k) is (-#E+1)k , and χ(G;k) and χ(G-e;k) have the same leading
term. Also, the leading term of χ(G⋅e;k) is k  .
Conclusion: The second term of χ(G;k) is (-#E+1-1)k . 

Computing the chromatic polynomial looks much longer than computing
the chromatic number, but the chromatic number is very hard to
compute in general. If the graph does not permit to use a shortcut
for computing its chromatic number, it is easier to compute its chroma-
tic polynomial and to check which positive integer is not a root of the
polynomial.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 5.3



Math 38 - Graph Theory
Chromatic polynomial for chordal graphs

The goal of today's lecture is to give a shortcut for computing the
chromatic polynomial of many graphs.

Geometry Graph theory

Simplex (triangle,
tetrahedron, etc.)

Chordal graph, i.e.
graph that admit a simplicial
elimination ordering.

Simplicial complex
(gluing simplices together)
Every face of a simplicial
complex is a simplex.

A vertex is simplicial if its neighbors form a clique.
Simplicial
Not simplicial

Complete graph

A simplicial elimination ordering is an ordering of the vertices v, ..., v
such that the vertex v  is simplicial in G-{v, ...,v }

Nadia Lafrenière
    05/18/2022



2Example
- For complete graphs, any ordering is a simplicial elimination ordering.
- For trees, an ordering starting at the leaves and going inwards is
  a simplicial elimination ordering.
- The cycle of length 4 has no simplicial ordering.

Proposition
The chromatic polynomial of a graph with simplicial ordering v,...,v  is
the product of the k-d'(v)'s, where d'(v) is the degree of v  in
the induced subgraph with vertices {v,...,v}.

Example

χ(G;k) = k (k-1)(k-2)²(k-3)

Sketch of proof
When it is added, v  has d'(v) neighbors, all colored with different
colors, so there are k-d'(v) options for coloring it. Doing this
process, we count all the options for coloring the graph with k colors.

Chordal graphs

Not a chord
Chord

A chord of a cycle C is an edge not in C whose endpoints are in C.

A cycle is chordless if it has length at least 4 and no chord.
A graph is chordal if it is simple and it has no chordless cycle (as
induced subgraphs).
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Theorem (Dirac, 1961)
A simple graph has a simplicial elimination ordering if and only if it is
a chordal graph.

Lemma (Voloshin, 1982, or Farber-Jamison, 1986)
Every chordal graph has a simplicial vertex.

The proof of the lemma is omitted. It is in the textbook as Lemma
5.3.16.

Proof of the theorem
⇒ (contrapositive) If it is not chordal, there is a chordless cycle C.
   In C, that has length at least 4, none of the vertices is simplicial,
   and no vertex can be the first one to be picked in C for the 
   ordering.
⇐  Using the lemma, we know that every chordal graph G has a simplicial
  vertex v. Delete v. Then G-{v} is chordal, so we can apply the
  lemma again, creating an ordering. 

Acyclic orientations

What is the meaning of χ(G;-1)?

orientation acyclic orientation

An orientation of a graph G is a digraph that has G as an underlying
graph.

An orientation is acyclic if it has no cycle.
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Examples

has chromatic polynomial χ(C ;k)=k(k-1)(k²-3k+3), and χ(C ;-1)
is 14.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001.
Section 5.3.

has chromatic polynomial χ(G;k)= k(k-1)(k-2)²(k-3), so
it has 72 acyclic orientations.

Proof is in the textbook, as the proof of Theorem 5.3.27.

Theorem (Stanley, 1972)
The absolute value of χ(G;-1) is the number of acyclic orientations of
G.



Math 38 - Graph Theory
Planarity

Is it possible to connect the three houses to the three utilites, without
connection between two utilities nor connection between two houses? No
crossing is allowed.

Pictures: Cmglee, on Wikipedia

Planar graphs

Intuitively, a graph is planar if it can be drawn on a plane in a way such
that no two edges cross.

not planar planar
is planar

A drawing of a graph is a geometric object, whereas the graph does not
depend on the drawing. A plane graph (or planar embedding) is a
drawing of a graph without crossing.

A face of a plane graph is a maximal region without a point of a curve
for the drawing.

Nadia Lafrenière
    05/20/2022

(Answer is further in the notes).



2The outerface is the unbounded face. It is unique for a finite graph.

Dual graphs

Remark
Even when G is a simple graph, G  might have multiple edges or loops.

Example (the paw)

Example

Proposition
1- The dual graph is planar.
2- G   G if and only if G is connected.

Given a plane graph G, we construct its dual, G  in the following way:
- The faces of G become the vertices of G .
- The edges of G are connections between two adjacent faces. For
  every edge in G, connect the two faces in G  by drawing an edge
  between the two vertices of G .

Proof of 1
Edges in the dual graph do not cross; they represent adjacency
relationships. If they had to cross, that would mean two adjacent faces
are in between two other adjacent faces D and F. If there is no way
to draw an edge between D and F without crossing, then they cannot be
adjacent.



3Remark
Two drawings of the same graph can have non-isomorphic duals.

No vertex with two loops
in the dual.

However, some properties will remain the same, like the number of faces,
vertices and edges in the dual (if the graph is connected).

Edge counted twice, since
both sides are neighboring
the face.

The length of a face in a plane graph is the total length of the closed
walks in G bounding these faces (including the contour of the edges).

Observation
The sum of the lengths
of the faces are equal.

Alternative proof
The number of edges are the same in G and in its dual. The length of
a face in G is the degree in G . By the sum of the degrees formula,
twice the number of edges is the sum of the length of the faces.

Proposition
The sum of the length of the faces is twice the number of edges.

Proof
This is since every edge is neighboring either two faces, or it has both
sides of the edges in the same face. 
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Theorem
Let G be a plane graph. The following are equivalent.
(A) G is bipartite.
(B) Every face of G has even length.
(C) G  is Eulerian.

(B)<=>(C) The dual graph is connected. The vertex degree in G  is the
length of the faces in G, so it is always even. A connected graph has
only vertices of even degree if and only if it is Eulerian.

Proof
(A)=>(B)  Since G is bipartite, all cycles have even length. The length
of a face is the length of a closed walk. G cannot have faces of even
length, since every closed walk (including the boundary of a face)
contains an odd cycle, which would contradict the fact that the graph is
bipartite.
(B)=>(A) If every face has even length, there cannot be odd cycles in
G. Cycles are closed walks, so we will prove there is no odd closed walk
in G. The boundary of one face cannot be an odd closed walk, by
hypothesis. So an odd closed walk would need to be on the boundary of
multiple faces. 
Assume it exists. The number of edges on the boundary of these faces
but not in the walk, counted with multiplicity, would need to be odd.
However, since they are not in the walk (that is closed) they are counted
for two faces, so their total number is even. Hence, the
number of edges in the walk is also even. A contradiction.

Euler's Formula
Theorem (Euler, 1758)
Let G=(V,E) be a connected plane graph with f faces.
Then, |V|-|E|+f=2.

Key argument: this formula is also valid for convex solids, and the
plane maps to the sphere (via stereographical projection).



5Corollary
All drawings with no crossing have the same number of faces. The dual
graphs of G all have the same number of vertices.

Remark
If you draw graphs on surfaces that are not the plane (like the torus),
this changes. The number 2 here is called the Euler characteristic of the
plane.

Example
|V|= 5
3|V|-6 = 9
|E|= 10
Not planar

|V|= 6
Bipartite => Triangle-free
2|V|-4 = 8
|E|= 9
Not planar

Connection to geometry

Names |V| |E| f |V|-|E|+f
Cube 8 12 6 2
Tetrahedron 4 6 4 2
Octahedron 6 12 8 2
Icosahedron 12 30 20 2
Dodecahedron 20 30 12 2

Convex polyhedra have Euler Characteric 2. This is true for Platonic solids.

The key of the proof is that 2|E| is the sum of the length of the faces,
and that each face uses at least 3 edges (4 if the graph has no triangle).

Corollary
If G is a simple planar graph with at least 3 vertices, then G has at most
3|V|-6 edges. If it has no triangle, then |E|≤2|V|-4.



6Proposition
All platonic solids are planar graphs.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001.
Section 6.1


