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Basic definitions and some problems 03/28/20272

Can you draw These pictures, without ever crossing your path?

WO

Can you draw This picture without ever lifting your pencil?

=

These are children problems, but also real=life problems in graph
theory, namely to know whether a graph is planar, or similar fo
know if a graph is Eulerian,

The first problem: Seven bridges of Konigsberg (Euler, 1736)

Euler was wondering if one can go
from one place in the Kénigsberg
area, and back 1o that original
place, by faking every bridge
exactly once,

(This is considered to be the first
solved problem in graph theory).

A modelisation of the problem:

This graph model the
areas of the city, There
is no need to know the
exact locafion ot each
bridge.

Remarks:

— Since we have To go back where we starfed, we do not care where
we startf,

— tveryfime we go from a location to another and back, we cross 2
bridges adjacent fo that location,



Since every island has an odd number of bridges, it is not possible @
fo visit all the islands by faking every bridge exactly once,

Some definitions

A graph G is made of a sef of verfices (modeling some objects), and
a sel of relations befween fwo vertices, called the edges. We denote
6 - (V,E) for the graph with vertices V and edges E. Any edge is a

pair of fwo vertices called the endpoints.,

We draw a graph (on paper or on the compuler) by representing the
vertices as points, and we draw a curve befween two vertices if they
are endpoints of the same edge. We can draw differently the same
graph.,

Example

A loop is an edge whose endpoints are the same vevTex.Q
Multiple edges are edges having the same pair of endpoints.
A simple graph is a graph having no loop nor multiple edges.

7. <>

Not simple graphs simple. grapk

When uv (or equivalently) vu is an edge, we say fThe verfices u and
v are adjacent, or that they are neighbors,

Subgraphs and containment

A graph G'=(V',E") is a subgraph of G-(V,E) it V'cV and E'cE,
We fhen say that 6' is contained in G, denoted G'ca.



Example ®
Every graph with n verfices is a subgraph of the complete graph with
m=n verTices,

A graph is connected if, for every pair of vertices, There is a path
(i.e. a sequence of edges) between them that belongs to the graph,
1T is ofherwise disconnected.,

Some important problems in graph theory

1, Acquaintances

Do every set of six people contain at least three mutual acquainfances
or three mufual strangers?

That guestion can be represented using a graph. Every person is a
vertex, and there is an edge befween fwo persons if they know
each ofher, Here, we assume knowing each ofher is a mutual relation,
l.e, knowing a celebrity usually does not count,

— Two graphs. The first one is a
G 4 . s—vertex graph with no three mutual
° strangers, nor three acquaintances.,
As a homework, you will have The second one has six verfices, and

fo prove your solufion to this contain both three mutual strangers
sTatement, and three acquaintances (a cligue).

Some useful vocabulary:

A cligue in a graph is a set of pairwise adjacent verfices, i.e, a
complefe subgraph,

An independent set is a subset of verfices with no adjacent pairs.,

a A cligue

@?? e An independent setf

2, Job assignments
1t there are m jobs and n people, not all qualified for all the jobs,
is there a way we can fill all The jobs?

Definition
A biparfife graph is the disjoint union of two independent sets.




veople The edges are between a job and ®

% jobs a gualified person for that job.
(=)

(The jobs cannot all be filled in this example),

3, Scheduling and avoiding conflicts
My high school used to have a very long exam sessions at the end of
the year, and there were still some conflicts, 1 wish the administrators

knew graph Theory..

Vertices: Subjects
Edges: If someone fakes both subjects,

SiS (@)
\ Pusicdl e, eventual scheduling conflicts,
//OEducahow

English ’ HisTory

ol — @ A coloring of a graph is a partition of
Cremistry a set info independent sets, Scheduling
with no conflicts is equivalent fo coloring,
Schedule: - |
| | 1t we want fo use the minimum time, we
1, History—English—PE .
| should use as few colors as possible,
2. Chemistry
3, Math

Reference: Douglas B, West, Infroduction fo graph theory, 2nd
edifion, 2001, Sections 1,1,1 and 1.1.2.
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We saw last class that fwo graphs are the same if they are differently,
as long as we are simply "moving the verfices'., The goal of foday's
lecture is to make this sfatement more formal, One tool we will use is
adjacency and incidence matrices. We will as well start classifying the
graphs.

Matrices: adjacency matrix and incidence matrix

Let 6-(V, E) be a graph without any loop (it does not have fo be a
simple graph). We number the vertices from 1 fo n and the edges
from 1 to m,

The adjacency mafrix of 6, written A(G), is the mafrix whose (i,j)—
enfry is the number of edges with endpoints the vertices i and j,

The incidence matrix ot G, writfen M(G), is the n—by—m matrix whose
(i,))—entry is 1 it verfex i is an endpoint of edge j, and otherwise o,

The adjacency matrix is always a symmedfric matfrix,
The graph on the left has the following adjacency and incidence
mafrices:

e, N 01 10 110 00
e A 101 10
3 g ) 1 0 2 0 _
e, A(G) = 1 2 0 1 M(G) = 01 1 11
0010 0 0 0 01
Ny €;

The degree of a vertex (in a loopless graph) is The number of
edges incident o that verfex,

Isomorphisms

So when are Two graphs the same? We will answer this question using
the notfion of a bijection, As a reminder, this an injective and
surjective function, or a one—to—one correspondence.,

An isomorphism from a simple graph 6 1o a simple graph H is a
bijection :V(6)-V(H) such that every edge uv of 6 is mapped
fo the edge f(u)f(v) of H., We then say G and H are isomorphic,
denoted 6 =H,




This is equivalent fo asking that there exists a simultaneous @
permufation of the rows and columns of the adjacency mafrix of 4
that would yield the adjacency mafrix of H,

Example
The following graphs are isomorphic:

1 3 1 3

2b<‘4 II/IN
This is easily seen with the bijection that exchanges 1 and 3.
Remarks:
— Finding a bijection of the labels is the way fo prove two graphs
are isomorphic, However, To prove They are not isomorphic, there are
many ways, For example, if the list of degrees is nof the same, uou
will never be able fo find an isomorphism, Or it the number of edges
(or edges) do not correspond. Among ofhers.,
— The isomorphism relation is an equivalence relation, i.e. this is a
symmetric velation (G6=H iff H=G), a fransifive rvelation (6=H and H=T
imply 6=7) and a reflexive one (6=6), That means that we can split
the graph into equivalence classes,

Example

The following graphs are not isomorphic., They both have six vertices,
all of degree 3, and nine edges, and They are both connected, but
one is biparfife and the other is not, Since they don't have the same
properties, they are not isomorphic,

%ﬂ 8 No friangle appear in the first graph.,

Example
All the isomorphism classes for graphs with 4 vertices are

II.\IX><7IN
(74 I ZAN B AN

Special graphs

There are some graphs thal have special names, and that turns out fo
be handy for whenever we want to use them or to classify them,



®

Complete graphs: Graphs with n verfices and (3)edges.

Example: . @
K. ’

Complete bipartite graphs: Biparfite graphs with independent sefs of
size s and v, with sr edges,

K., Example: y W

Paths: Connected graphs, with all the vertices ot degree 2, except
at most two who have degree 1,

P Example: ¢, \/\

Cycles: Paths with as many edges as vertices,

Example: (.
Cn

The complement of the graph 6 is the graph fhaf has the same

verfices and whose edges are all the edges that do not belong to 6:
\<\V\- E(e)= G

A graph G is selt—complementary if its complement G is isomorphic
fo 6.,

Example: Cg is self—complementary,

' %G

A decomposition of a graph is a list of subgraphs in which every
edge appears exactly once,
Example: The cube decomposed info copies of K,

Note: K5 is otten called the claw, E

Proposition
A graph G is self—complementary if and only if the complete graph
is a decomposifion info two copies of a.




The Pefersen graph ®
The Petfersen graph is a 10—vertices graph with 15 edges that is very
famous, as it is an example or a counfer—example fo many phenomena,

The Petersen graph is the graph of 2—element subsets of 1,2,3,4,5,
and there is an edge befween 2 subsets if fheir infersection is empty.

2 Some properties of the Petersen graph:

— Two non—adjacent verfices share exactly one

i5 44 neighbov ,
‘A' — The graph has no triangle, but is not biparfite,
P\ — The shorfest cycle in the Petersen graph has length s,
A (The length of the shortest cycle in a graph is called

the girth of the graph,)

reference: Douglas B. West, Introduction to graph theory, 2nd edition, 2001, Section 1.1
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Today's lecture aims fo define the proper vocabulary to talk about
Trajectories and connectedness in graphs,

Definifions

Recall that a path is a graph whose verfices can be ordered without
repefifion (except maybe for the endpoints) in a sequence such thaf
two consecufive verfices are adjacent. A path is a u,v—path if it starfs
at verfex u and ends af verfex v,

A walk is a list (yve,v,.,e,v) of vertices and edges such that the edge
e. has endpoints v and Ve A walk is a u,v—walk if its endpoints

(the first and \asT verfices of fhe walk) are u and v, If there is no
mulfiple edges, we can write the walk as (v,v,.,v).

A trail is a walk with no repeated edge. Similarly, a u,v—Trail has
endpoints u and v,

The points that are not endpoints are internal vertices.

The length of a walk, frail, path or cycle is its number of edges.
A walk or a frail is closed if ifs endpoints are the same,

Example .
: (a,x,a,b,x,u,4,%,a) specifies a closed walk,

. ¢ but not a trail (ax is used more than
Y ) (a,b,%x,u,4,%x,a) specifies a closed trail,

The graph confains the five cucles (a,b,x,a), (w,u,x,u), (v,4,%x,Vv),
(x,uy,v,x) and (y,c,d,y),

The trail (x,u,4,c,d,4,v,x) is not an example of a cucle, since verfex
4 is repeated (so if is not a path),



Lemma @
Every u,v—walk confains a u,v—path,

Proof
The proof can be done using the principle of strong induction, and

we induce on fThe number of edges.

Base case: No edge, u=v is the only vertex in the graph., Only walk
has length o, and is therefore a path,

Induction hypothesis: Assume that, for a walk with k<n edges, fhere is
always a path with the same endpoints,

Induction sfep: The walk has n edges. There are Two cases: either
there is no repeafed vertex or only the endpoint is repeated, and
then the walk is already a path, or there is a repeated vertex x.
In the latter case, we delefe the edges between the first and last
occurrences of x, which leaves us with only one copy of %, and a
u,v—walk with fewer than n edges. We can thus use fhe induction
hypothesis to conclude that fhere exists a u,v—path in the u,v—walk,

O
Example: The u,v—walk from previous page.
In the walk (a,%,a,b,%x,uu,x,a), we delefe
whal happens befween the first two
occurrences of a, and gef the closed walk
(a,b,x,u,4,%x,a). Then we delete what happens
between fhe two occurrences of x, and gef
the cycle (a,b,x,a), which is a path.,

Connectedness, components and cufs

Recall that a graph is connected if and only if fThere exists a path
between u and v for every pair of verfices wu,vi,

A component of a graph G is a maximal connected subgraph,
A component is trivial if it has no edges; in this case, the unigue
vertex is said 1o be an isolated verfex,




Example ©

The tollowing graph has 4 components, each of which are circled in
orange,

> A

Proposition
Every graph with n verfices and k edges has at least n—k components,

& An isolafed vertex

Proof

The proof can be done by induction on k., The case of k»n is obvious,
since the number of components is always nonnegative,

Base case: If k=0, then each of the n vertices are isolated, and there
are n components,

Induction hypothesis: Assume that a graph with k=1 edges and n verfices
has af least n—k+1 components,

Induction sfep: Let G=(V,E) with |VI-n and |EI-k, Remove the edge e
fo get G6—e., The component of G containing e can either be splif into
Two components by removing e, or stay a component, So G has either
the same number of components as G6—e, or one fewer, By induction
hypothesis, G—e has at least n—k+1 components, so G has at least n—k,

In the last proof, we had fo distinguish the cases where removing the
edge was creating a new component or not, An edge whose delefion
creates new component has a special name:

A cut—edge or cuf—verfex of a graph is an edge or verfex whose
delefion increases the number of components, We write 6—e or 6—M
for the subgraph of G obtained by deleting an edge e or a sef of
edges M; we write 6—v and 6—S for fhe graph obtained by deleting a
verfex v or a sef of verfices S along with their incident edges.




A subgraph obfained by delefing a subset of verfices and fheir imcidev@
edges is an induced subgraph: we denote it 61T if T-WV\S and we
deleted the verfices in S,

Ex‘amp\e 4 Vertices 3 and 5 are cut—vertices, and the edge
RS 2 . q is the only cut—edge.
7N . The induced subgraph for fthe vertices 1, 2,
: 509 3,4—8V]Ol61‘\3$aq
Theorem

An edge is a cut—edge if and only it if belongs fo no cycle.

Proof

LeT e-uv be an edge in the graph 6, and let H be the component
containing e, We can restrict the proof to H, since deleting e does not
influence the other components. We want to prove that H—e is
connected if and only if e is in a cycle in H,

1t e is in a cycle ¢, c—e is a path P between v and u avoiding the
edge e, To show that H—e is still connected, we need fo show that,
for every pair of verfices ix,yi, there is a path befween x and 4. Since
H is connecled, there exists in H such a path, If that path does not
confain e, it is still in H—e, Ofherwise, replace e by P, and remove an
edge from that path everyfime T appears twice consecutively,

1t H—e is connected, then fhere exists in it a path P between u and v,
Hence, adding edge e-uv creates the cycle P+e, O

The last theorem allows us to characterize cut—edges. Would such a
theorem be possible for cut—vertices? The following example proves that
asking for it To be outside a cycle is not a requirement for a cut—
verfex, since verfex 3 is a cuf—verfex, and belongs fo two cycles:



Removing vertex 3:
Y

‘ Two connected
O 0 components

T

reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001, Section 1.2
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Today's lecture aims fo give the imporfant properties of bipartite
graphs. We will also define Eulerian circuits and Eulerian graphs: This
will be a generalization of the Kénigsberg bridges problem,

Characterizafion of biparfite graphs

The goal of this part is fo give an easy fest fo determine if a graph
is bipartite using the nofion of cycles: Konig theorem says that a graph
is bipartite it and only if it has no odd cycle,

Lemma

Every closed walk of odd length confains an odd cycle, This is called
an odd closed walk,

Proof

We prove it using strong induction on the length of the walk (i.e,
The number of edges).,

Base case: length 1, The walk is a loop, which is an odd cycle,
Induction hypothesis: If a walk has odd length at most n, then it
contains an odd cycle,

Induction step: Consider a closed walk of odd length n+1, 1f it has
no repeated verfex (except the first and last one), this is a cycle
of odd length, Ofherwise, assume verfex v is repeated, We can split
the walk info two closed walks starfing and ending at v, one of
even length, and one of odd length smaller than n. By induction
hypothesis, the latfer contains an odd cycle,




That lemma will be helptul for characterizing bipartite graphs, of
course, biparfife graphs can have even cycles, which starfs in one
independent set and ends there,

We can represent the independent
sets using colors,

Theorem (Konig, 1493s)
A graph is biparfite if and only if it has no odd cycle,

Proof

Notice fthaf a graph is biparfite if and only if all its components are
bipartife., So we do the proof on the components.

= We prove fhe confraposifive: it is has an odd cycle, it is not
bipartite.

Since every cycle must end af fhe verfex where it starfs,

it starts and ends in the same independent set, Since every
edge is going from one set fo the ofher, we alfernate
between the fwo sefs., At the end of the cycle, we cannot
close it, since we would need fo change the set of the
first vertex, Hence, if a connected graph is biparfite, it has
no odd cycle.

not possible

=We still need To prove that a connected graph without odd cycle is
biparfite, If the graph has only one verfex, it is biparfife,

Otherwise, start at verfex u, and color ifs neighbors with color blue,
Then, color the neighbors of the blue vertices in red, and repeat this
process by coloring the neighbors of the red verfices in blue, unfil

all vertices have been colored, 1 claim thal no verfex will change color
in That process; assume otherwise, that v is changing color, That would
mean fhat fhere exists a path of odd length from u fo v (fhe one
That colors v in blue), and a path of even length doing it (the one
that colors v in ved). The combination of these two paths is an odd
walk, and contains an odd cycle, which is prohibited by the hypothesis.,
Hence, the coloring is well defined, and the two colors represent
independent sefs, The graph is bipartite, []



. ®
() ° ®
Q odd oycle even cycle
neither blue
nor red

Technigue for checking whenever a graph is biparfife:
— I1f it is biparfite, prove it by finding fwo independent sets.
— If it is not biparfite, find an odd cycle,

Eulerian circuits

A graph is Eulerian if it has a closed trail containing all the edges.

The graph in the Kénigsberg bridges problem is not Eulerian, We saw
fhat the fact that some vertices had odd degree was a problem, since
we could never vefurn fo that verfex after leaving it tor the last fime,

Theorem

A graph is Eulerian if and only if it has af most one wnontrivial
component (i.e, component with edges), and if every vertex has even
degree.,

Proot

We first prove = by proving the confrapositive: if a graph has more than
one non—Trivial component, or it there is a verfex of odd degree,

Then the graph is not Eulerian,

1f a graph has at least two non—trivial components, fhere can't be
a walk going through all the edges, since they are in separate
components,

1f a graph has a verfex of odd degree, we are in fhe case of the
Konigsberg bridges: we can leave the verfex more often than we can
come back (or vice—versa), and Thus our trail cannot be closed.

= We need 1o prove that a connected graph with only vertices of even
degrees is Eulerian, We can ignore the isolafed verfices for this since
we are focusing on the edges. The following lemma is useful:



Lemma

1t every vertex of a graph has degree af least 2, then it
confains a cycle,

Proot

Let P be a maximal path in that graph., If it is a cycle,
we are done, Oftherwise, lef u be an endpoint of P,

Since if has degree at least 2, u has a neighbor v not

in P. Bul since P is maximal, thal means that v is already
in P, and the edge uv completes the cycle.

Proof of the theorem (continued)

We proceed by induction on the number of edges.

Base case: 0 edge, the graph is Eulerian,

Induction hypothesis: A graph with at most n edges is Eulerian,
Induction step: If all vertices have degree 2, the graph is a cycle
(by definifion) and it is Eulerian, Otherwise, let 6' be the graph
obtained by deleting a cycle, The lemma we just proved shows it is
always possible to delefe a cycle., By induction hypothesis, G' is
Eulerian, To build an Eulerian circuit in G, start by the cycle we just
deleted, and append the Eulerian circuit of G-, -

Proposition
Every graph with only vertices of even degree decomposes info cucles,

Eulerian circuits are closed trails that pass through all edges., A
similar property is being Hamiltonian: a Hamiltonian circuit is a circuit
That passes Though all verfices exactly once, A Hamiltonian graph is
a graph with a Hamiltonian circuit,

Reference: Douglas B. West, Introduction to graph theory, 2nd edifion, 2001, Section 1.2
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Today, we are doing a bit of combinatorics and will deduce some
properfies on the degrees, number ot edges and number of verfices,

We already defined the degree of a verfex in a loopless graph fo be
the number of edges incident fo it,

For a generval graph, define the degree o|6(v) of the vertex v to be
fhe wnumber of edges incident fo it, with each loop counted twice,

The maximum degree of a vertex is denoted A(G) and the minumum
degree is denofed 6(4).

A graph is said fo be reqular if 6(6)-A(G).,

The order of a graph 6-(V,E) is V|, as The size of 6 is IE.

Example
- K, s a regular graph, Each verfex has degree n—1,
- K, s reqular if and only if m=n, Then, the degree is always n.

— A connected reqular graph that has the same order and size is a
cycle,

— Hypercubes are rveqular graphs, E

Counting and bijections

Proposition (degree—sum formula)

1t 6-(V,E) is a graph, then Zola(v) = 2|El .

Proof

For each edge, there are two endpoints (maybe equal), If the
endpoints are different, this edge contributes for 1 in the degree
of two different verfices, 1f the edge is a loop, it adds 2 to the
degree of the verfex it is incident to, So either way, every edge
accounts for 2 in the fotal degree count,

Corollary

In any graph 6-=(V,E), the average degree is 21El/IVI, and
6(a) =12IEl/IVI =A(6).,




Covollary
Every graph has an even number of vertices of odd degree,

Corollary

A k—=veqgular graph (i.e. a regular graph in which the degree of each

verfex is k) has kIV|/2 edges.

Example: Hypercubes
The n—dimensional hypercube H, is defined recursively as:
- Ho is The simple graph with one verfex

@

- H_ s obtained by creafing fwo copies of H and appending an edge

betfween corresponding vertices in the fwo copies,

H H, "l?_

Hs
o
N 2 5! 1 y'
Ae \ i 'tl v ‘ﬂ"
Proposition

H, s regular, as each verfex has degree n.,

Proof

The proot can be done by reqular induction,

The base case is H_, and it has no edge,

Induction hypothesis: The n—dimensional hypercube H, s n—regular,
Induction step: The (n+1)—=dimensional hupercube is made of two
copies of H , and we add an edge between every pair of similar
vertices in the two copies. This way, we add exactly one fo the

degree of each verfex from H , and fhat degree is, by induction
hypothesis n., '

Proposition
1t k>0, then a k—veqular bipartite graph has fhe same wnumber of
vertices in its fwo independent sefs,

< 7 Either not bipartite or not
regular,




Proof @

Since The graph is regular, all vertices have degree k, If there are

m edges in fofal, the sum of the degrees for all the verfices in one
independent set is m, as every edge has exactly one endpoint in that
set, Since the graph is k—reqular, there are m/k verfices in each sef,
so the order of both sefs is the same,

]
Vertex—deletion and reconstruction conjecture
Is it possible fo veconstruct a graph if you have only a list of ifs
subgraphs? Therve is a long—standing, and still open conjecture sauing
it is, and so far we know it is almost always possible (that being
undersfood in a probabilistic sense).,

For a graph G, a verfex—deleted subgraph is an induced subgraph G6—v
obtained by deleting a single vertex v,

Example
><l has verfex—deleted subgraphs 4 x D/
x| |
Proposition
For a simple graph G-(V,E) of order ny»2 and size m,
M= :2{\/#6((7-\[\

N-L

where #E(G—v) is the number of edges in the graph G—v.,

Proot

We start with the summation, and we will prove the summation is equal
fo m(n—2):

;#E(&—v% Zlel—dG(v) - ZVIE| - Zvola(v) = mn—2m

Conjecture (Reconstruction Conjecture — Kelly, Ulam, 1942)

1t G is a simple graph with at least three verfices, then G is uniguely
defermined by the list of ifs vertex—delefed subgraphs (up to
isomorphism),




Note that the hypothesis that 6 has at least three vertices is @
important, Ofherwise, we would find a counferexample with two vertices,
since both simple graphs with two verfices have fhe same set of
vertex—deleted subgraphs, e o o

Example

><‘ has verfex—delefed subgraphs 4 x D/
1% \ l

To reconstruct the graph, we know that 4 verfices have degree
#€(6)—4 and 1 has degree #E(G)—2. Using the proposition, the
number of edges in G is (2+4x4) /36, So the list of degrees is
(2,2,2,2,4), and The graph is connected.

That means that the vertices are in two cycles, The length of the
cycles can be found by looking af the subgraphs: there is af least one
cycle of length 3, Since the graph is simple, both cycles have length
3 and the graph has fo be isomorphic o the bowtie,

Even fhough the conjecture is notf proven, there are a number of cases
that are known, Also, we can know some properfies from fhe list of
subgraphs; for example if fhe graph is connected,

Reference: Douglas B, West, Introduction fo graph theory, 2nd edition, 2001, Section 1.3
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Extremal problems consider the minimum and maximum numbers some
sTafistics on a class of graphs can reach, We infroduce some of the
fypes of proots useful in graph fheory: Algorithmic, and by
construction,

First example

In any simple graph (V,E), the maximum number of edges is
(,v() . (Vi IVI=\)

2 2

Proot
In a simple graph, there can be af most one edge per pair of
distinct vertices, The maximum wnumber of edges appear in Kor

This is an exfremal problem, since we are looking at the maximum
number of edges, The class of graphs here is all simple graphs.

Example

In a biparfife graph with independent sets of size k and m, fhere
can be at most km edges.

Independent sets of size 2 and 4,

W _\V/I ¢ edges al maximum, km is the number

of edges of K,

Edges in connected graph

Proposition
The minimum number of edges in a connected graph with n vertices is
n=—1.

Proot
We need fo prove two things:

— It a graph with n verfices has fewer than n—1 edges, it is not
connected,

— There exists a connected graph with n verfices and n—1 edges.




Recall from last week (Friday), that a graph with n vertices and @
m edges has af least n—m components, Hence, if m<n—1, the graph

has at least 2 components and is not connected.

Also, The path with n vertices has n—1 edges and is connected, proving

That the minimum is realized, N [

Remark (on the proot fechnigue)

When giving the solufion fo an exfremal problem, there are two parfs

fo be proven:

— That the value we give is minimal (or maximal), i.e. that you cannot
give a lower (respectively, higher) value,

— That fhis value can be realized on at least one graph of the class we
consider,

Proposition
Let 6 be a simple graph with n verfices, It the minimum degree is
6(6)= (n=1)/2, 6 is connected.

Proot

The minimum degree of the graph means that every vertex should have
at least this number of neighbors, in a simple graph,

To prove that 6 is connected, we must show that there is a path
between any pair of vertices w,vi. We will in fact prove that there
exisTs a path of length at most 2,

— If (w,vi are adjacent, they are obviously in the same component,

— Otherwise, they share at least one neighbor w: There are n—2 other
vertices, and fhe sum of their degree is d(u)+d(v)=n—1, Hence,
u—w=—v is a path connecting them, O

A bound is said fo be sharp if improving it (reducing a lower bound or
increasing an upper bound) would make the statement wrong.

The bound in the last problem is sharp., To prove it, we give an example
ot a graph with n vertices and minimum degree |7 =1 thaf is not

connected: This graph is the disjoint union of KﬂJ and Kpq e
2 7
1 vertices
@ %@ Minimum degree is 4, just under
5 = (1—1)/2.

KS/ degree 4 Ke/ degree s Graph is disconnected,



Biparfite subgraph 3)
Here we prove thaf, given a graph G, we can always find a biparfife
subgraph with at least a fixed number of edges. We give an

algorithmic proot fo construct the graph, but a proot can also be done
by induction,

Theorem
Every loopless graph G=(V,E) has a biparfite subgraph with at least IEI/2

edges.

Proof (algorithmic)

We start with any parfition of the vertices info two sets X and V.
Let H be the subgraph containing all the vertices, but only the edges
with one endpoint in X and one in Y.

@ ﬁ b edges, instead of 10
-

Let v be a vertex in X, If H has fewer than half the edges incident to
v, then it means that v has (in 6) more neighbors in X than in Y, To
increase the number of edges in H, switch v to Y. The number of
edges just increased.,

LDme oo = <O -

O - less than half the edges

As long as H does nof have at least half the edges of G af every
verfex, fThere are verfices that can be swapped from X fo Y or ¥ fo X;
repeal this process, When it ferminates, the wnumber of edges

in His always at least half fhe number of edges of a. ]
Triangle—free graphs

A graph is said o be friangle=free if it has no three b

vertices thal are all adjacent. In general, a graph 6 is A
H—free it it does not contain H as a subgraph, 'A'

13 15

The Pefersen graph is friangle—free (but not bipartite),



Theorem (Mantel, 1907) ®
The maximum wnumber of edges in a simple triangle—free graph with n

vertices is t‘d

Proof

For The proof, we again need fo prove two things:

—that a friangle—free graph with n vertices cannot have more than L“;J
edges.

— that there exists, for any n, a graph with n verfices and t‘—‘J edges
That has no friangle,

For the first part, assume the graph is friangle—free, Take a verfex v
of maximal degree A, Ifs Aneighbors cannot have edges among them,
So every edge of G must have af least one endpoint in a _
non—neighbor of v, or in v itself, There are n—A such v X
vertices, Each such verfex has degree as most A, |

Therefore, we give an upper bound on the number of edges:

the wnumber of edges is at most A(n—A) (because n—A is the number
of vertices not adjacent to v). Maximizing A(n—A) gives A=n/2.
Hence, the number of edges is at most t‘d

For the second part, we must prove that a triangle—free graph has ";J
edges., This is the case of |<m L

We can split 7 vertices info two sefs

W of 3 and # vertices, which leads to
12 edges:, which is the smallest integer
below 44/4,

reference: Douglas B, West., Infroduction fo graph theory, 2nd edifion, 2001, Section 1.3
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We look at the list of degrees fo gef some intormation on the graph.,
We also look at what list of nonnegative integers can be fhe degree
sequence of some graph,

Let 6 be a graph with vertices v, v, .., v. The deqgree sequence
ot 6 is the list d(v), d(v),., d(v). Usually, we write this sequence
in decreasing order (and reorder the labels accordingly):

di>dy>...>2d, >0

Proposition
The nonnegative integers d, o, ., d, are the degree sequence of
some graph it and only it their sum is even,

Proof
We need fo prove that the condition is both necessary and sufficient,

=y (fThe condition is necessary) We already showed (last week) that
the sum of the degrees in a graph is always even,

<= (The condifion is sufficient) This part of the proof is done by
constructing a graph with a given degree sequence,

First, we consider all the vertices with odd degree (there is an even
number of them). We pair them by drawing exactly one edge at each
ot these odd verfices, After this step, the wnumber of endpoints fo
be added to every vertex is even, so we can add half this number

ot loops, making it a degree sequence,
]

Example

(5,3,2,1,1) can be realized on a (non—=simple) graph in this way:

8__00_

ot course, this technigue does not work for simple graphs, because of
the loops. Moreover, 5 cannot be the degree of a vertex in a simple
graph with 5 vertices,



A graphic sequence is a list of nonnegafive infegers that is the @

degree sequence of some simple graph., A simple graph with degree
sequence d realizes d.

Characterization of graphic sequences

We already noticed the two obvious conditions for a nonnegative
integers sequence fo be graphic, i.e., the sum of degrees must be
even and the maximal number cannot be greater than n—1, However,
this is nof enough, as shown with the degree sequence (2,0,0), which
must necessarily involve a loop., g

Theorem (Havel 1955, Hakimi 1962)
The only one—element graphic sequence is (0).
For >, an infeger list d of length n is graphic if and only if d* is

graphic, where d' is obtained by deleting its largest element (A) and 4
from the A next largest degrees,

Example

The graph below has degree sequence d=(3,2,2,2,1).

It is obvisouly graphic by the picture, Here, A=3, and we obtain d-

as (1,1,1,1), Nofice that it is not the degree we obtain by delefing the
highest—degree verfex (shown on the right), which would be

(2,1,1,0)s And (1,1,1,1) is also realizable, as shown below,

> e

(3,2,2,2,1) (2,1,1,0) (1,1,1,1)

Proot (of fheorem)

The case where there is only one vertex is obvious,

We need to prove that this condifion is necessary and sufficient when
N1,

<= (sufficient) If d* is realizable, there exists a graph 6' with vertices
having d* as degrees., 1 want 1o add a vertex that has degree A
greater than the largest degree of G6'. To do so, 1 add the vertex
and connect it fo the A verfices with larger degrees in G, realizing d,




d' = (2,1,1,0)
d - (3,3,2,2,0)

-> (necessary) There are two cases to consider, 1) The verfex v of
degree Ahas neighbors that have the A next highest degree, Delefing
v and ifs incident edges yield a graph with degree sequence d-.

2) Consider the neighborhood of v (the vertex of higher degree)

and call it N, Let S be fhe set of the A vertices having the highest
degrees (except for v)., Case 1) is when N=S, so here they are distinct,
We will franstorm 6 1o get N-s,

Take a verfex u in N\S, so u is adjacent to v, but has a low degree,
and fake w in S\N (not adjacent to v, but high degree),

Since w has higher degree than u in G\ivi, w has at least one neighbor
x that is not adjacent fo u.

An ) No edge in the
<, original graph.

By swifching fhe edges uv and xw fo vw and ux (from the blue fo the
red in the picture), we increase INNSI. We repeat this process as long
as N#S, When N=S, we use the first case.,

R RR

(3,2,2,2,1)

Example

(3,2,2,2,1) (1,1,1,1)

The case of loopless graphs

Multigraphs (even loopless) have a much easier characterization for
degree sequences, as given by this theorem of Hakimi,

Theorem (Hakimi, 1962)
A sequence of decreasing nonnegative integers d,d,.,d is the degree
sequence of a loopless graph if and only if its sum is even and

di <dg+...+d,



®
Proot is lett as homework for next week's sef,
Hint: You can proceed by construction, but it might be easier fo do
induction (not necessarily on the number of vertices).,

Graphs with same graphic sequence

In the last proof, we exchanged the endpoints of some edges fo get
a new graph with the same graphic sequence.

A 2—=swifch is the veplacement of a pair of edges v, wxi by
ux, vwi, provided ux and vw did not already exist in the graph,

/u/v WP ; o
/ \\

X X

Remark
A 2—=swifch always preserves the degree of each verfex,

Examg\e

> <D G

Both graphs have degree sequence (2,2,2,2,2,2).

2 —switch

Theorem (Berge 1413)
Two simple graphs G and H have the same graphic sequence if and

only if fhere is a sequence ot 2—swifches from 6 fo H,

The proof is omitted, but can be found on page 47 of the fextbook,
The condifion is clearly sufficient, as the 2—switches preserve the

degree of each verfex,

geference: Douglas B, West, Introduction To graph theory, 2nd edition, 2001, Section 1,3
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We introduce directed graphs and fheir terminology. Applications include
Markov chains, automafa and De Bruijn graphs.

A directed graph or digraph is made of fwo sets: the vertices, and a
sef of edges defined as ordered pairs of two vertices: a fail and a
head. For one edge, the tail and the head are both endpoints, and
we say the edge is from its tail fo ifs head. We sometfimes use the
word arrow for the edges of a directed graph.

AN

. >¢ Edge from u to v

Some examples

é___
. . 4\
Trail efiguette Car traffic around
the Green
Vo~
N—_A

fhe sentence: "While
al the beach, the
dog eatfs the biscuifs
in The box,"

Parts of speech in \

Like in undirected graphs, a loop is an edge with its fwo endpoints
being equal, Multiple edges are edges having the same tail and the
same head.,

YV NN

~__® Not a multiple edge

A directed graph is simple if there is no loop nor multiple edges.

Example: All the directed graphs above are simple.



In a simple digraph, we wrife the edge from u to v as uv (and so @
fhis is not the same as vu). If uv is in the graph, v is a successor of

u and u is a predecessor of v. a0V
\¢

A simple digraph is a path it ifs verfices can be ordered so that v
follows u in the vertex ordering it and only if there is an edge from
u o v. The only verfex that can be repeated is the first and fhe last
vertices, if they are equal; the path is then a cycle,

Equivalently, we can define walks and frails (walks without repeated
edges) in the same way as in undirected graphs.

The underlying graph of a digraph D is the undirected graph G in which
we removed the orienfation of the edges. Hence, uv=vu, and if uv and
vu both appear in D, uv is a multiple edge of 4,

Remark: The underluing graph of a simple digraph is not alwaus a simple
graph,

TN >
\{/ N———
simple multiple edges

Subgraphs and isomorphisms are defined in the same way as for
undirected graphs.,

Adjacency and incidence matrix

In a digraph, the adjacency and incidence mafrices are not defined in
The same way as in graphs.,

The adjacency mafrix A(D) of a loopless digraph D has u,v—entry fhe
number of edges from u fo v. The incidence mafrix has v,e—entry +1
if vis tail of e, =1 if it is its head, and o if v is not an endpoint,

The digraph on the left has the following adjacency and incidence

matrices:
v e 0 0 1 0\ The adjacency -1 +1 0 0 0
v 101 0 . 41 0 41 -1 0
. V.ooe. v, ADY =10 1 o0 o matrix is no | M@& =14y 1 1 4
0 0 1 o/ more symmefrict 0 0 0 0 +1



Connectedness: weak and strong @)
A digraph is weakly connected it ifs underlying graph is connected,

1t is strongly connected it there is a path from u o v, for every

fwo verfices u and v.

The graph below is weakly connected, but not strongly connected, as

there is no path from verfex 3 to vertex 4, N .
. A
\17' 63

The strong components of a digraph are its maximal strongly connected
subgraphs.,

Degree and neighborhood, in and out

Let v be a vertex in a directed graph., Its ouldegree is the number
of edges that have v has a fail, and is noted d*(v)., The indegree is
fhe wnumber of edges that have v has a head, d-(v).

The number of edges is 3 d*(v)- z d-(v).
The ouf—neighborhood of v is the sef of vertices w : vu is an edge’,
The in—neighborhood is defined similarly,

Eulerian graphs

A digraph is Eulerian if it contains an Eulerian circuit, i.,e. a trail

That begins and ends in the same verfex and that walks through every
edge exactly once,

Obviously, a graph will not be Eulerian it if has more than one nontrivial
component or it the sum of the in and out degree of some verfex is
odd, The following theorem gives a classification of Eulerian digraphs.

Theorem
A digraph is Eulerian it and only it it there is at most one nontrivial
sfrong component and, for every vertex v, d+(v)=d-(v).

Proof

(=) If there is an Eulerian circuit, it visits all the vertices in a
nontrivial component, so there is af most one of them. Also, the
Eulerian circuif goes in and out of v the same number of times, which




means the in— and oufdegrees must be equal., )
(=) We prove by inductfion on the number of edges that if the in—
and outdegrees are the same at every vertex in a strongly connected
graph, there is an Eulerian cirouid,

Base case: When there is no edge, the empty civcuit is Eulerian,
Induction hypothesis: Suppose fhat, whenever there is af most m edges,
every graph that has, at each verfex, fhe same in— and outdegree,
and thaf has at most one non—trivial strong component, is Eulerian,

— For a graph with m+1 edges, we first prove the following lemma:

Lemma
1t the outdegree of every verfex is at least 1, then the digraph

has a cucle,

Proot (of the lemma)

Let v be a vertex, Since if has outdegree at least 1, fhere is a
walk starfing at v. Since every vertex has outdegree at least 1,
the walk can always be extended. Since the number of vertices in
D is finite, the walk will go back to a vertex it already visited,
The first time this happens, the part of the walk between fhe
fwo occurrences of a vertex is a cycle,

7

Proof of the theorem (continued)

For a graph with m+1 edges, consider the unique wnontrivial strong
component, The lemma applies to it, so there is a cycle c., Removing
the edges of ¢ to the digraph preserves the equalify of the in— and
oufdegrees, Let D' be fhal reduced graph., We can apply the
induction hypothesis to get an Eulerian circuit in each sfrong component
of D', Each such component shares af least one vertex with ¢, since
they are in the same strong component of D, To build an Eulerian
circuif, we travel through c, Each fime we get fo a verfex that

has neighbors not in ¢, we visit all the edges in its strong component:
we know it is possible since the component is Eulerian, Thal process
gives an Eulerian circuit in the original digraph.,



cycle ¢

D
Application: De Bruijn cycles

Let D, be the following digraph:

— vertices are binary sequences of length n

— theve is an edge from a sequence s fo another s* if the n—1 last
letters of s are the n—1 first lefters of s-.

) As an example, D, is illustrated on the left,
Sy
PSS Propositio

010

. 1o . The De Bruijn graphs are Eulerian,

w0 Eor the proof, use the previous theorem and verify
m the equalify of the out— and indegrees.

Problem: What is the minimum length for a sequence containing all the

binary sequences of length n? To solve this problem, use the above
proposition and your homework.

reference: Douglas B. West, Introduction to graph theory, 2nd edition, 2001, Section 1.4
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We infroduce the nofion of trees, a very imporfant fype of graph.
Over the next week or two, we will study the properfies of frees and
forests.,

Definition

A graph with no cycle is acyclic,

An acuclic graph is a forest; a connected forest is a free.
A leat is a verfex of degree 1 in a tree, o

>—< a forest X
star

not a tree

Every component here (except the one with

/\/\ a red X on it) is a tree, and the whole

thing (without the one with the X) is a forest,

Leaves are highlighted, A sfar is the free in which there is
one verfex adjacent 1o every other,

Caveat: As graphs, frees don't need fo have one specific voot, We can
always disTinguish one root, but it is not needed. We will go back to
This subject later,

Lemma

Every tree with at least two vertices has af least two leaves,
Deleting a leaf from an n—verfex tree produces a free with n—1
vertices,

Proof

A tree is always connected so there is a path p between any two
vertices u,vi. Since there is no cycle, that path can only be extended
finitely many fimes without returning to a previously visited vertex, The
last fime it can be extended in one direction, that vertex is a leaf, as
There is no cycle,



when one delefes a leaf u from a tree, it does not disconnect it, @
since There is no path going through that vertex (not as an endpoint),
i,e, for v,w in the graph, there is no path passing through u from v

fo w, []

One consequence of that lemma is that we can build every tree with
at least fwo verfices by "adding leaves*. We will discuss that topic
on Wednesday,

The following theorem gives multiple characterizations of trees:

Theorem

Lef 6 be a graph with n verfices (n =1), The following statements
are equivalent:

(A) G is connected and has no cycles,

(B) 6 is connected and has n—1 edges,

(C) 6 has no cycles and n—1 edges.

(D) G has no loop and has, for each pair of verfices w,vi, exactly
one uv—path,

\
— )

&/—B
|
Y
Y
D
Proot

(1 A=B) We need to prove thal if 6 is connected and has no cycle, it
has n—1 edges.

By fTheorem from 4/¢, it must have af least n—1 edges for it to be
connected. To prove there is al most n—1 edges, we prove that a
graph with n edges has a cycle (which is not permitted, by hypothesis).
This proof is by induction on n (the number of verfices):

Base case: If n=1, the edge is a loop and fhat is a cycle,

Induction hypothesis: Assume a graph with k vertices and k edges has

a cycle,

Induction sfep: We need fo prove that a connected graph with k+1
vertices and k+1 edges has a cycle, If there is a leaf, remove it and
delete the incident edge; appluing induction hypothesis tells us that
there is a cycle in The rest of the graph,

The proof of such a statement is a closed walk A
that visits every verfex in the complete digraph 3(
with vertices A, 8, C and D: S

C



1f there is no leat, then the lemma from page 1 proves the graph

is not a free,

(2 B=A) We need to show that if 6 is connected and has n—1 edges,
it has no cycle., We prove the confraposifion: if 6 is connected and
has a cycle, there is more than n—1 edges.

Since G has a cuycle, there is at least an edge that is not a cuf—edge
(by the theorem from 4/1), Deleting that edge would mean the graph
has one fewer edge and is connected, which means, by theorem from
4/%, that the graph with one fewer edge has af least n—1 edges. So
the original graph has af least n edges.

Until now, we proved A<=»B, They are equivalent, so we can use them
fogether from now on,

(3 A=C) Since AeB, we know fhat G is connected, has no cycle
and has n—1 edges, which already proves C),

(4 C=B) We want fo show thaf if a graph has n—1 edges and no
cycles, it is connected, We look at each of fhe k components.

In the component i (1 =i =<k), assume there are n(i) verfices,
Since the component is connected and has no cycle, it has n(i)—1
eolqes (by A=B), Hence, the fotal number of edges is

Z (n(i)=1)- Z(m(u)) k-n—k, However, the hypothesis of C is that the
qvap\n has n—1 edges. So there is exactly one component, and fhe
graph is connected,

Now, A, B and C are equivalent, That means that two characteristics
among connectedness, no cycles and n—1 edges are sufficient fo show
a graph is a Tree,

(s B=D) Since B=A, the graph has no cycle; in particular, it has no
loop. 1T is also connected, so there is a path p befween any pair of
fwo verfices u,vi, To show unigueness of thaf path, we use the
hypothesis that there is no cycle, and confradiction: Assume there
existT 2 paths p and g befween u 1o v.

e U

AN



Let u' be the first verfex in p and g whose next edges differ, )
and let v' be the next verfices that appear both in p and ¢. Then,
the part of p between u' and v' and the part of g befween u' and
v' are pafhs with no common vertices That have the same endpoints;
aluing them together creates a cycle, Hence, there is a unigue path
between u and v, for any pair of vertices tu,vi,

(6 D=>A) Since there is a path befween every pair of verfices, fhe
graph is connected, The unigueness of the path means there is no
cycles, proving A.

Corollary
a) Every edge of a free is a cut—edge., (by A)

b) Adding one edge to a free forms exactly one cycle (corollary of
A=B),

Spanning Tfrees

Let 6-(V,E) be a graph,

A graph is a spanning subgraph of G if it has vertex set V,
A spanning tree is a spanning subgraph thal is a tree,

Example

T LU AU U

In purple, five spanning subgraphs of the graph in blue. Only the first,
third and fourth ones are spanning trees.

Theorem
Every connected graph has a spanning free,

Proof

Every connected graph has a connected spanning subgraph. To remove
the cycles from it, delete one after the edges thaf are in cycles.,
Once there are 1 edge fewer than vertices, the graph will be a free,




Distance in frees and graphs ®)

1t 6 has a uv—path, fhe distance between u and v, noted d(u,v), is
the smallest length of a uv—path., If 6 has no such path, d(u,v)-e,
The diameter of 6, diam(G), is The maximum distance befween two
vertices,

The eccentricity of a vertex u is the distance fo the furthest vertex,
The vadius is The minimal eccentricity,

M Distance: d(a,b)-d(b,c)-1, d(a,c)-2

C Diamefer 2. A star always has radius 1, since the
a% cenfral verfex has eccentricity 1, The diamefer,

for all graph, is the maximal eccentricity.

The Pefersen graph has radius and diameter 2.
Recall there is an edge befween two verfices if fhey
3* represent disjoint 2—sefs of 1,2,3,4,5).
V‘(' 1t two verfices i) and jk are not adjacent, they must
A share an element (as sefs). Then, Im is disjoint from
ij and 1k, so ij=Im—jk is a path of length 2.
Heve, 1i,],k,\,mi represents 11,2,3,4,5),

Theorem
1t G is a simple graph, diam(G)=3 => diam(G)=3.

Proot: Read and understand as homework., In the book, that is
Theorem 2.1.1, p.M.

The center of a graph is the induced subgraph with vertices of
minimum eccentricity,

WK B

A
The Petersen graph and complete graph have cenfer )9’
the whole graph, The star has, as cenfer, only the A

central vertex, " 4



Theorem (Jordan, 1869) ®)
The cenfer of a free is a vertex or an edge.

That means it cannot be a set of vertices, whenever the graph is
a free, 0f course, the examples above show it is not frue for graphs

in general,

Reference: Douglas B, West, Introduction fo graph theory, 2nd edition, 2001, Section 2.1
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How many labeled trees are there? And up to isomorphism? This is
the questions we want to ask foday., We will only be able to solve one
ot these,

Example
The number of labeled trees with 10,1,2,35 verfices are, respectively,
1,1,1,3.,

n=0, 1 tree n=1, 1 tree n=2, 1 free n=3, 3 frees
| v 2 3
! 2 e—C
® —
! = 2
oo —a
2 | S

For the example with n=3, the three trees are isomorphic, However,
as labeled trees they are not the same; their adjacency matrices are
different (fhe vertex with degree 2 is nof the same).

In the case of unlabeled trees, there are 1,1,1,1,2,3 frees of 0,1,2,3,
4 and 5 vertices, respectively, These are the trees up fo isomorphism,

—bg D\X——o o._ln_a-——ﬂ ccﬂer-r, g

™ o665 peth
,\_{_/, sYor
Doing The same exercise with labeled graphs, we find there are 2(2\
graphs. (Proof will be in homework),

n

So there are at most 2 ) labeled trees with n vertices. Buf we can
expect this number To be much less.,

Remark: Counfing frees, or graphs, up To isomorphism is incredibly

difficulfr Hence, we will focus on labeled trees and labeled graphs.

Theorem (Cayley's formula; proof is from Prifer, 1918)
There are n' labeled frees with n vertices, if n=1,



Proof @

This proof is done using a bijection, To do so, we have to find
another collection of objects indexed by the positive infegers, so that
There are n'* items indexed by n,

Natural choice: the n—ary sequences of length n—2.

Given a free, the corresponding sequence is the Prifer sequence

or Prifer code,

We present two algorithms: The first one takes a tree as input and
franstforms it info a unique n—ary sequence of length n—2; the second
one Takes an n—ary sequence of length n—2 and builds a unigue free
with n vertices, This will prove that the number of n—ary sequences of
length n—2 and the number of binary frees with the same verfices are
The same.

Algorithm 1. Production of the sequence

Let T be a free with vertices 1,2,.,n. If n<z, we already checked
that therve is a single free., So assume n=2,

while there is more than two verfices, remove The leat with smallest
label (it always exists, by Lemma from Friday). To the sequence,
append the neighbor of thaf leat (if is unigque, since a leaf has degree
1),

once there are only fwo vertices left, stop.

Example i S Y
Q\C\) 3/O—_-O
- o <—> (1,5,3,1,3)
OG/ D\O
i T e i
. (1,5,3)
K/Oﬂo ' X (1/5/3/1)

L o
T o (1,5,3,1,3)




Algorithm 2. Production of the tree ®
Take a n—ary sequence s of length n—2, n=2,

Draw n isolated vertices, and label them 1,2,.,n. We will add n—1
edges., AT the beginning, no verfex is marked.

While the sequence is not empty:

Mark the smallest unmarked verfex whose label does not appear in the
sequence (this always exists, since sequence owly has length n—2),
Delete the first element of the sequence and draw an edge between
this element and the verfex you just marked. This adds one edge.
When the sequence is emply, there are n—2 edges, one for each
element of the original sequence. There are two unmarked verfices,
including one isolated, Draw an edge befween them, then sfop.

(1,5,3,1,3) -
(5,31,3) 9. o ©
qg 3 (3,1,3) O@/ D\o‘1
© /® (1,3)
® (3)
\/@ \/@ \/@ \/@
9 3 : 3 K /3 B / /5 E /\/3 qﬁ\/B
¢ . ¢ e f“egle 9 e 9 e @ o

Claim: this is a tree., To prove this claim, we only need to prove
either that it is connected or that it has no cycle, since we already
know there are n—1 edges. We prove there is no cycle.

When we add an edge, we always do so between a marked vertex

and an unmarked one; we then mark the unmarked one, If fhere was a
cycle, That cycle would need to have at least one edge added with
both endpoints that are marked, which is not possible, That proves the
claim,

Since both algorithms are well=defined, there is a bijection befween

n—ary sequences of length n—2 and the trees with n vertices, -



Note that the seemingly related problem of counting unlabeled trees ®
is much harder.. To the extent that no closed formula is known fo count
them, The only thing we know is an asymptofic estimate of the number
of frees with n verfices when n is very big; even then, the proot is
very hard and requires technigues that are far beyond the scope of
this class.,

Counting labeled frees with a given degree sequence

From now on, we want to count frees with n verfices, labeled 1,..,ni,
and verfex i having degree d, How many such trees are there?
We use Prifer sequences To solve this problem,

Observafion: In the second algorithm, we always add an edge between
the verfex we mark and the vertex fThat appears in the sequence
(assuming we mark both verfices in the last step). So the degree of
the vertex i is the number of occurrences of i in the sequence, plus 1,

Covollary

Given positive integers d, d , .,d, summing to 2n—2, there are exactly

T(:';)";m trees with verfex set 11,2,.,ni such that vertex i has degree d. .

Proof

Using fhe observafion, we know that the number of such frees is the
number of sequences with (d=1) occurrences of i, for every i in
1,2,.,0t. The number of sequences of length n with numbers all
distinct is the number of permutations, this is nr (=1x2x.xn), When a
number is repeated k fimes, there are kr fewer sequences: This is
because we accounfed fhe k! permufations of these occurences of the
number.,

Hence, the wnumber of sequences of length n—2 with d—1 occurrences

of i ig 2
Tri ldt'l)‘

=

Reference: Douglas B, West, Introduction to graph fheory, 2nd edition, 2001, Section 2.2.
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Question: How many spanning trees does the complete graph with n verfices have?

IAZ ST KN
SUNX XK AN

For the complete graph, there is an easy way of answering: This is the fofal number
of frees with n vertices, as they are all subgraphs of the complete graph. Hence,
it is T,

However, the following guestion is much harder:

Question: Given any graph G (simple or not), how many spanning frees are subgraphs
of it?

Finding a closed formula fo count the number of spanning trees would be a lot to
ask for trees that don't have a specific strucfure. Instead, we see an algorithm

To answer this gquestion easily.,

Proposition
There are as many spanning frees in a graph G as in The graph obtained from 6 by
delefing all ifs loops.,

Proof
Coops cannot belong fo any tree, as they are cycles, So deleting them won't remove

any subtree,

However, we cannot use the same sfrategy for mulfiple edges, as there can be more
Than one associated spanning free. Here is an example:

TN TN
“ N4 i N
Example: Count the number of spanning frees of the kite (K —e, ) @

4 trees passing Through the outer cycle (of length 4)

S S S D



4 trees passing Through the diagonal, since we need fo choose one edge from @

each friangle, E

So there are g spanning Trees in the kife,

To count the number of frees, there are two cases, These two cases span all
The possibilities: either we use one specific edge or we don't use it, of course,
we cannot be in both situations at the same time. Combinatorially speaking,
That means the fotal number of spanning frees is
#(spanning frees using that edge) + #(spanning frees wnot using it).,
1f the lafter seems easy fo count in general, the former needs the introduction of
the following operation,

In a graph G, the confraction of the edge e-uv is fhe replacement of both
vertices u and v by a single verfex, by keeping all the edges incident to it, except
e. The resulting graph, G-e, has one fewer edge than G, and one fewer vertex,

Example
In fhe kite, the contraction of the central edge gives the following:

e
NS
Proposition

The number of spanning frees of G, noted T(6), satisfies, for any single edge
e, T(6)=t(a—e)+T(6e),

Proof

We aiready noted above that the fotal number of spanning trees is the sum of fhe
frees with and without edge e. The thing we need to prove is that t(Ge) is the
number of spanning trees using edge e.

Start with T a spanning free of Ge; T is connected fo the new vertex created
from the contraction of e. Replacing that vertex with the edge e

(and distributing the edges among the two verfices like in the G) gives a

spanning tree of 6 using e,

Also, from any spanning tree of G using e, we gef a spanning tree of G-e by
confracting verfex 6 (i.e. the spanning graph is still connected and still has no

cycle),
®

This proposition will be the key fo count, vecursively, the number of spanning trees.
We could also benefit from some shorfcufs, like the following proposition:



Proposition @
1f 6 has no loop and does not have cycles of length at least 3, its number of
spanning frees is the product of the multiplicities of the edges.

Proof
Since G has no loops nor cycles of length af least 3, all the cycles have length

2, i.e. They are mulfiple edges. AT most one of fhem can appear in a given
spanning Tree. Also, af least one of them must appear: otherwise the graph
would be disconnected, This is because these edges are all not part of a cycle
that uses other edges. Hence, we have to pick exactly one edge per pair of
endpoint, These choices all being independent, we multiply their numbers.

Corollary
It there are k edges le,e, .. ) befween endpoints u and v in 6, the number of

spanning trees of G is given by
T(6—{el,ez,.,.,ek N +kt(6e),
where G-e is the graph obtained by merging u and v and deleting te,e, .., &

That yields an algorithm to count the number of spanning trees in 6:

— 1t 6 is disconnected, it has no spanning free; if G has a single verfex,
it has only one spanning tree,
— Delefe all loops in a.
— 1f 6 has no cycles of length af least 3

— The number of spanning frees is the product of fhe multiplicities of edges.
— Otherwise, choose a (mulfiple) edge e with mulfiplicity k, that is in a cycle of
length at least 3, The number of spanning frees is T(G6—e)+k T(Ge).

In the last step, G—e has fewer cycles than G, and G-e has shorter cycles,
That means that the algorithm eventually terminates,

Example
We count the spanning frees in the graph below:

N

As we did earlier with the kite, we consider deleting or contracting the central

edge.



Since it has mulfiplicity 1, the number of spanning frees can be counted in this \,@4:

5 &

Confraction @@ 30 spanning Trees using that edge.

Deletion /\(J # spanning frees of /\} JUs 10 = 16
= =

=

Deletion ﬁ No cycle of length = 3

== There are 2x3x4=24 spanning frees not
& using top and diagonal edges.

Contraction We need fo count the number of
spanning trees of fhe mulfigraph on

the left, and multiply it by 2,

# spanning frees of é ;g PICPLIT
Deletion There are 3x4=12 spanning
1 frees not using the right edge.

Contraction 5y = For each edge on the right,
W there are 1 edges in the
contracted graph.

L6

Total number of spanning frees
30+1(24+2(12+2%x7)) = 106 spanning trees

That process works for small frees, but the recursive procedure makes it very long
fo do for large connected graphs, We will see next class a theorem fo make fhis
compufation efficient,

reference: Douglas B, West. Introduction to graph theory, 2nd edition, 2001, Section 2.2
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We give a more efficient way of counfing the number of spanning trees
in loopless graphs., As a second parf, we are wondering if i is possible
fo decompose a graph into multiple copies of the same free,

Counting spanning frees, efficiently

Last lecture, we counted the number of spanning frees using the
deletion—contraction process, That fell like a good process since if
allowed us To count (for the first fime) the wnumber of spanning
frees, However, the algorithm to do so has an exponential complexity
(i.e. the number of sfeps required To make it work might be as big
as (roughly) 2*5),

The following theorem gives an efficient computation for the number
of spanning frees.,

Theorem

Let 6 be a loopless graph and A be ifs adjacency matrix, Lef L be
the matfrix with \y=—a.ﬂ.amo| \h.=o|(i), the degree of vertex i,
The wnumber of spanning trees of 6 is any cofactor of L.

(Recall that the (i,))—cofactor of the mafrix M is computed by

(- D' det( M)
where M, is the matrix obtained from M by deleting its i=th row and
j—th column,)

Example

- 0230

g ———_ 2 2 0 1 2

@7(} A(3104>
02 4 0

- ’ ) 0

Lss= (—2 5 —2) det(Ls3) =5- (30 —4) +2- (—12) + 0 = 106

Just as we obtained last lecture, there are 106 spanning frees.



1f you are intevested in reading it, the proof can be found on page§?d
sb—g1 of the fexfbook,

Decomposition

Recall that a decomposition of a graph is a list of subgraphs in which
every edge appears exactly once. This definition raises the following
problem: When can we decompose a graph 6 into copies of H?

Example
Two copies of a self—complementary graph is a decomposition of a

complete graph.,

Proposition

1t 6 decomposes info many copies of H, then

1) The number of edges in H divides The number of edges in a.

2) The maximum degree of H cannot be greafer than the maximum
degree of a.

Proot

1) Assume there are m copies of H in G, Then, The number of edges in
G is m times the number of edges in H,

2) Assume A(H)>A(G). So There is a vertex v in H, and that vertex
must appear in G as well, The copy in 6 may have more edges incident
fo it, bul cannot have fewer, So v in 6 has degree A(H), contradicting
the maximality of A(G).

Are these two condifions sufficient for graphs to decompose info multiple
copies of a graph? The following example will show this is not enough.

Example: Decomposition of the Pefersen graph., The friangle (3—cycle)




®

"T—graph' i

The Pefersen graph decomposes into mulfiples copies of the following
graphs:

— 1 copy of ifself;

— 15 copies of an edge;

— 3 copies of eifher the H—graph, the E—graph or the T—graph;

— 5 copies of paths of length 3,

By the proposition above, 1, 3, 5 and 15 are the only possible numbers
of edges that can appear in The smaller graphs. To prove the list

is exhaustive, we must show That the H—graph, the E—graph and the
T—graph are the only graphs with s edges thal can occur in the
decomposition, and the same has fo be frue for the path of length 3
compared fo ofher graphs of size 3,

For fhe case of 5 edges:

— The Pefersen graph is reqular of degree 3, so no vertex can have
degree 4 or 5 (vemark 2),

— The shorfest cucle in The graph has length 5, The graph cannot be
decomposed info cycles of length 5, because verfices would need to
have even degree,

— The graph cannot be decomposed info paths of length 5, since fhere
would be at most ¢ verfices of odd degree (the endpoints of fhe
path.,)

— So the smaller graph has no cycle, at least 3 leaves and maximal
degree at most 3. The possibilities are the following:

> T .
To decompose it into 5 copies of a graph, with 3 edges, there are 3

options:  T=e '\(’



—The triangle is not possible since it does not appear in the Pew‘evsem@
qvaph;
— The claw (star) is not possible because of the following proposifion:

Proposition
A k—veqular graph can be decomposed into copies of stars with k edges
if and only if the graph is bipartife,

Proot

- 1f the graph is bipartite, consider one of the two independent sefs
in The biparfifion, Every verfex in this set has degree k, so that verfex
and the incident edges form a star with k edges. Also, every edge of
the graph appears in exactly one of these sfars, since every edge has
exactly one endpoint in this independent sef,

-> We prove the contrapositive: If a graph is not biparfite, it cannot be
decomposed info stars with k edges. Assume it is not biparfite, so it
contains at least one odd cycle, In this cucle, every other verfex must
appear as the cenfer of fhe sfar; otherwise, there are edges that
cannot appear in the decomposition (like the ones in red below).

Also, since every edge appears once, there cannot be two neighbouring
verfices that appear, because every vertex fakes all k the incident
edges, If fwo adjacent vertices appeared, there would be an edge
counfed twice, So there cannot be an odd cycle in the graph to
decompose it into stars.

¥ @

only one edge
left in cycle
(around the
penfagon)

This proposifion allows us to conclude with the only possible
decomposifions for the Petersen graph.

Graceful labelings

In general, The problem of decomposing a graph into many copies of
graphs is a very hard one, Even the easier problem of decomposing
it into frees is hard, as shown by the following conjectures:



®

Conjecture (Ringel, 1964)
If Tis a fixed free with m edges, then K decomposes into 2m+1
copies of T,

Note that despite multiple attempts fo prove this conjecture, it is sfill
open, Most attempts fo solving it focus on gracetul frees,

Definition

A graceful labeling of a graph 6 with m edges is a labeling of a graph
with The wnumbers (0,..,mi such that distinct vertices receive distinct
labels and edges receive the difference ot labels; the labeling is
graceful if all the numbers 1,..,mi appear on the edges of fhe graph,
A graph is graceful if it has a graceful labeling,

Remark
To make if possible to define such a labeling, a graph must have at
least as many edges as the number of verfices minus one (which is the

case of connected graphs, for example). G
0
O 32 { 2 3
B L ! Yy
§ No gvacefu\ \abe\mq

Example
All stars and paths are graceful, Exercise: Find a proof:

Conjecture (Graceful Tree Conjecture — Kotfzig, Ringel, 194)
Every free has a graceful labeling,

Theorem (Rosa, 1967)
1f a free T with m edges has a graceful labeling, then K, , has a

decomposition into 2m+1 copies of T, Nof an
iff statement

geference: Douglas B, West, Infroduction fo graph theory, 2nd edition, 2001, Section 2.2



Math 3¢ — Graph Theory Nadia Lafreniere
Optimization and weighted graphs 04/25/20272

We consider fwo problems, and use weighted graphs fo solve them: The
first one is the problem of the minimal spanning free (where minimal
reters to The weight on the edges), and fhe second one is the
shortest path,

Weighted graphs

A weighted graph is a graph with edges labeled by numbers (called
weights), In general, we only consider nonnegafive edge weights,

Sometimes, « can also be allowed as a weight, which in opfimization
problems generally means we must (or may not) use thal edge.

0

4

2

ple

Minimum spanning tree
Problem: Given any weighfed graph, find the spanning free with the

minimum weight, where the weight of a tree is the sum of the weights
of ifs edges.

Example

An infernet provider wanfs fo wire cable in a new housing development
and wants to reach every house. However, due to cerfain weather
conditions and due to the distance befween houses, the cost of
reaching houses might not be the same from every path., The graph
below illustrates the potential cost of every section: that is the weight
of the edges, and the houses correspond to vertices,

How can They reach every house at minimum cost?

To make sure they connect every house,

they must build a spanning free, To find
the spanning free with minimal cost, fhey
can use, for example, Kruskal's algorithm,

They have no incentive fo create a cycle,



Kruskal's algorithm: Given a connected weighted graph 6-(V,€), find @
ifs minimal spanning tree,

Idea: AT every step, we have a forest H, We add edges from 6 1o H
until H is a spanning tree. The subgraph always stay acyclic,

To ensure H is minimal, we consider edges to be added in increasing
order of fheir weight,

Inifialization: H has V| isolated verfices (no edge). The edges of 4
are sorted in increasing oder of their weight,

Iteration: Consider the next smallest edge of a. 1f adding it o H
reduces the number of components of H, we do so. (Otherwise,

iT creates a cycle, so we do not add it),

Stop: When we get af the end of fhe list of edges, or when H is a
spanning free, whichever comes first,

Example

) 5 5 s s

z 2 2 4 Uzs Uz.’s’
e (i i e
4‘ { '4| [ l 7] [ : 7] [

e O LA, P Sfop (spanning
N/’ e Q 22 %/ } ’.@ free)
e ! © f & !

Theorem (Kruskal, 1956)
In a connected weighted graph, Kruskal's algorithm constructs a
minimum—weight spanning tree,

Proof

We prove the following two things:

1) The vesult is always a spanning free,

2) There can't be any spanning tree with smaller weight,



1) We must show that the result is acyclic, connected and reaching ®
every vertex,

— It is acuclic, since we only add edges that reduce the number of
connected components, These edges cannot creafe cycles,

— Obviously, if we stop because the graph is a spanning free, if is
connected and reaches every verfex, Oftherwise, we stop because we
considered adding every edge; we did not add them only it they did
not reduce the number of components, So the number of components
in The torest is The same as in the original (connected) graph, Since
we started with all the verfices of G, a tree is always spanning.,

2) We prove it by confradiction. Assume T is a spanning free with
lower weight than H (obtained by the algorithm)., They both have

the same number of edges (since they are spanning frees), so there
is at least one edge e in T bul not in H, Conversely, there is an
edge e of H that is not in T. Since T has lower weight than H, we
can choose e<e’, In fact, take the smallest such e, We considered e
betfore e and did not add it o H. Necessarily, e would have created
a cycle in H, so there is a cycle in T (because e is the smallest edge
in T buf not in H)., A contradiction, So T:=H, and H is the minimal
spanning Tree,

Kruskal's algorithm is not the only algorithm that does so. See, for
example, Prim's algorithm, where you grow a tree from one single

verfex, g

Montri I%
herbrooki
: eﬁ‘i\\f\\,\ Granby Sherbroo ;g
Saint-Jeangsur-Richelietme.

Shortest paths EEE |
Given two verfices in a labeled graph, what
is the shortest path?

Dijkstra's algorithm gives all the distances e © g“’“\ e
from a given vertex u to other verfices i o 2 " ren

. 2 Middlebury. e ? N
in the graph, a : J
@ Killinogton Hanover
Rutland 3



Observafion: This cannot be done using a greedy algorithm,
{

reedy = informed
Examp\e ‘ ! local olafab%
Shortest path from u fo e

c,. 5 4
: 2
AA
o s o
b [ C
With a greedy algorithm: d(u,e)=14? A (much) shorter path: d(u,e)=<s

Dijkstra's algorithm

We need a weighted graph, and we compute the minimum—weight path
from one specific vertex u to every other verfices. An edge that
does not exist is equivalent to an edge with weight «,

Idea: The distance d(u,v) is The weight of the edge between u and v
it they are adjacent. We give tentafive distance d(u,w) for every
verfex w not adjacent 1o u, and that distance never increases during
The process.,

Inifialization: The sef of visited verfices is wy, d(u,u)=0, the fentative
distance from u to x, t(x), is the weight of the edge between u

and x (e if it does not exist),

Iteration: Take the verfex x with shortest value of T(x) amongst fhe
non—visited vertices, The distance fo u is d(u,x)=T(x),

"Visit it* by modifying t(y) for all ifs neighbors, by The minimum of
These:

— what T(y) was already; the fenfafive distance does not change

— d(u,x) + the weight of the edge xy; There is a shorfer path

Stop when you visifed every vertex (for a connected graph).,

Theorem
Dijkstra's algorithm computes the distance d(u,x) for every verfex x
in a connected graph,



Sketch of proof

— Previously visifed vertices cannot see fheir distance increase.,

— When a verfex is visifed, there cannot be a shorter path passing
Through a non—visifed vertex,

Example

geference: Douglas B, West, Infroduction to graph theory, 2nd edition, 2001, Section 2.3
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In a graph, a matching is a subgraph with maximal degree 1 (so every
vertfex is connected to at most one other vertex),

A maximal, bul not
maximum matching j \E
A maximum matching,
also a perfect matching W

A vertex that appears in a mafching is safurated, otherwise it is
unsaturated.

A pertect malching in a graph is a mafching thal saturates every
vertex,

Example

In the complete bipartite graph K, , there exists pertect matchings
only it m=n, In this case, the matchings ot graph K represent
bijections between two sets of size n. These are the permutations
of wn, so there are n: mafchings.

— Pevfect matchings can only occur when the number of verfices is
even,
— That is not a sufficient condition, as shown by the claw,

No possible perfect mafching, since
the cenfer verfex is saturated by
any edge.



Example @
Counting the perfect matchings in a complete graph.

— K_ has no perfect matching if n is odd.

— Othevrwise, it has (n—=1)(n—3).31 perfect matchings:

— Label the vertices 1,..,n

— Match verfex 1 with any of its neighbors; there are n—1 possible
choices

— As long as there are still unsafurated vertices, mafch fhe
smallest unsaturated vertex with another one. The number
of ways to do so is n—=3, then n—s, .., until there is only one
way To do so.

Maximum matchings

A matching of a graph is maximal if no edge can be added. It is
maximum if no ofher mafching of this graph has more edges fhan if,

Example

Maximal W Maximum W

Perfect =» Maximum => Maximal
In general, The converse is not frue.

Can we transform a maximal mafching into a maximum mafching?

M—alfernating —>
path

Lef 6 be a graph and M be a mafching of 6. An M—alternating path is
a path of 6 that alfernates befween edges in M and edges not in M,
An M—augmenting path is an M—alfernating path with both endpoints

unsafurated,
W augmentation .\N\

Remark: When M is maximum, there is no augmenting path,




Theorem (Berge, 1457) @

A mafching M in a graph is a maximum matching if and only it the graph
has no M—augmenting path.

Proof
= follows from the remark above
= We prove the converse: if it is nof maximum, it has an augmenting

path, If M is not maximum, then there is a mafching M with more
edges.,

We consider the subgraph H with edges that appear in exactly one of M
and M* (not in both).

Claim: components of H are all either even cycles or paths.,

— Even cycles have as many edges from M as from M', This is because
every endpoint can have at most one edge in M and one in M,

— Since IM"I>IMI, there is at least one path in H with more edges of M-
fhan edges of M, This is a pafh thaf starts and ends with unsaturafed

verfices of M, so this is an M—augmenting path,

Proof of the claim: Thal means that every verfex of H has degree at
most 2, and fhat cycles have even length,

The maximal degree of H is 2 by consfruction. AT most, one verfex
can have one incident edge in M and one in M',

1t a cycle has odd length, then most edges belong to the same
matching, and there must be two edges belonging fo the same matching
and incident to the same verfex, Thal contradicts the construction of
a mafching,

e

problem B



Matchings in bipartite graphs

Example: Tob assignments

1f there are m jobs and n people, not all qualified for all the jobs,
can we always fill all The jobs?

people The edges are befween a job and
M ol a qualified person for that job,
(The jobs cannot all be filled in this example),

Theorem (Hall's Theorem, 1435)

Let 6 be a biparfite graph with fhe independent sets X and Y
forming a partition of the verfices.

G has a mafching that saturates every verfex of X it and only if
The neighborhood of every S <X has order af least [sl,

N I(S)

19 -

Consequence: Stable marriages, Watch the video:
hitps: / /www.numberphile,com/videos/stable—marriage—problem

Reference: Douglas B, West. Introduction to graph theory, 2nd edifion, 2001, Section 3.1



Math 3¢ — Graph Theory Nadia Lafreniere

Covers, mafchings and independent sets:  04/24/2022
Min—max theorems

Recall from last class that a matching is a subset of edges such that

no verfex appears fwice as endpoints, We compare these notions with
those of edge covers and verfex covers,

A verfex cover is a set S of vertices of 6 thal contains at least one
endpoint of every edge of 6. The vertices in S cover 6.

Examples
A cover of K, has af
'@- '@‘ least size n—1, W M >l<

An edge cover is a set of edges of 6 that confains as endpoints
every verfex of G,

The minimum number of
'@' '@' % %ﬁ edges in an edge cover

s #V/2,
Sets Items Property
Matchings Edges AT most one edge per vertex
Edge covers Edges At least one edge per vertex
Vertex covers | Vertices | AT least one verfex per edge
Independent set |Vertices | AT most one vertex per edge

When are:

— Verfex covers and independent sets equal?
— Mafchings and edge covers equal?



@

From the table above, it might seem that mafchings and vertex covers
are nof relafed, However, consider a matching. In a vertex cover, every
edge of fhe mafching has fo be covered by one of ifs endpoint, So the
edge uv has either u or v (or both) in the vertex cover. Also, u (and
v) cannot belong to more than one edge in the mafching, So we have
the following proposition:

Matchings and verfex covers

Proposition
1t M is a mafching of 6 and S is a verfex cover of fhe same graph a,

MI=<ISl,

Largest Smallest vertex cover:
matching: size 3,
size 2.

Largest . T
W matching: W S.ma esT verTex cover:

' size 3,

size 3,

In the last example, the mafching and the vertex cover have the same
size (IM|=1S]), Of course, one can get smaller mafchings and larger
verfex covers, but the first example shows it is not possible to get

a mafching and a verfex cover of the same size,

Remark
The statements
"For any mafching M and any vertex cover S, IM|<|S|"

and

"The maximum size of a matching is always at most the minimum size
of a cover®
are equivalent,



Theorem (Kénig, Egervary, 1931, independently)
1f 6 is a biparfite graph, then the maximum size of a matching in 6 is
equal To the minimum size of a verfex cover in G,

Proof

Available as, either:

— the proof of Theorem 3.1.1 in The fextbook,

— fhe short proot of Romeo Rizzi (fhe paper is on Canvas).

The first one is a proof by construction, the second one is a proot
by confradiction,

Remark

This is not an if and only if statement, For example, the graph below
contains a friangle, but has a mafching a verfex cover of the same
size,

LaneéJ( Smallest vertex cover:
W mafching: size 3
size 3,

Also, being a perfect mafching is not enough, as shown by this
example with just 4 vertices,

Complete graphs have vertex covers
g g of size n=1 and maximum matching
of size 5]

Remark

The theorem above is an example of a min—max relation: that means
that solving an opfimization problem calling tor the minimum of
something in a graph is equivalent to solving an optimization problem
for the maximum. Here: the maximum mafching and the minimum vertex
cover, We will see more of them over the term,




Optimization problems ©

Sets Items | Problem Notation
Matchings Edges Finding maximum a'(6)
Edge covers Edges Finding minimum B'(6)
Verfex covers | Vertices | Finding minimum B(G)
Independent set |Vertices | Finding maximun™® a(6)

* This is defined as the independence number

As an example on how to use these notfafions, o«
Kdnig—Egervary Theorem states that a' (G)-B(G)  remaseenin
for bipartite graphs. For any graph G, o' (G6)<B(G).

OL?

Gallai's

Lem ma (G—B) Theorem (below)

In a graph G=(V,E), S is an independent set it and only it V=5 is a
vertex cover, Hence, |V|- a+B,

Proof
Let S be an independent sef, meaning there is no edge befween two
verfices of S; every edge has at least one endpoint in V=5, Thaft
means thal V=S is a verfex cover,

Conversely, if §' covers G, every edge has af least one endpoint in
S', so V=S" is independent,

2

Theorem (Gallai, 1959, o' —B")

Let 6 be a graph with n verfices, none of them being isolated.
Then, a'(G)+B'(6):=n,

~———> size of maximum matching
+ minimum edge cover

Skefch of proof

2 sfeps:

1, From a maximum mafching (of size a'(4)), construct an edge cover
of size n—a'(G), That implies that n—a' (6)=B"' (4).

2., From a minimum edge cover (of size B'(G)), construct a mafching
of size n—=B'(6), That implies that a'(G6)=n—B'(4).,

These Two steps prove Thal a*(6)+B'(6)=n.




®

Corollary (Kénig, 1916, a—B")
1f 6 is a biparfite graph with no isolated verfex, then fhe size of a
maximum independent set is the size of a minimum edge cover.,

Reference: Douglas B, West, Introduction fo graph theory, 2nd edition, 2001, Section 3.1
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Cuts and connectivity

A verfex cut (or separafing sef) is a subset of verfices S such that
6—S has more than one component,

The connectivity of G, k(G), is The minimum size of a separafing sef,
it it exists, or n—1,

A graph is k—connected if ifs connectivity is at least k,

Examples

Disconnected = connectivity o ' ; W

Connected - 1—connected

Cycles of length at least 3 have connectivity 2
Petersen graph has connectivity 3,

Complete graph K has connectivity n—1,

Complete biparfite graph K has connectivity minin, mi,
By convention, we say the rchjvaph with one vertex has connectivity o,

Proposition
The connectivity of a connected graph is at most its minimum degree.

Proof
One can isolate a single vertex by removing all the vertices around if,

Remark
The connectivify of a connected graph is not at least ifs minimum

degree,
Minimum degree 2, bul fhere is a
cuf—vertex =» connectivity 1,



Example

The hypercube H has connectivity k,

of course, since it is k—regular, it has connectivity at most k.,
We can prove by induction it has connectivity at least k:

] [T X

Example: Harary graphs

Harary graphs Hu.are graphs with n
vertices and M= | edges, 2<k<n, being

as reqular as possible,

They have connectivify k:
— k is the minimum degree of H

Theve is a  proof in the fextbook
that it has connectivity at least k.,

Theorem (Harary, 1962)

Remember the problem

with ¢ cards and s
square graph tesrahedral graph .
e i students? 1f ¢ or s is
i . .
s
,./I\\ even, H_ is a solution to
LAY : ‘
£ ity
S-cvele graph S-teheel graph pentatepe graph
Hyy Hys s
A A
AN N
» = ;
A N
v/ WY
6evele graph wtility graph octahedral graph 6-complete graph
sy Hy Hy Hi
L a—
(/ \’\> /ﬁ\
/ N,
", K J ) A
N N ATAN
—evele graph (3,7)-Harary grapk  T-circulant g aph (£,2)  i7,4)-Turdn graph
iz Har Hys
M ——F"\"
r I
\ f \a‘;'\
/ < 4/
\ .

Letf ky2, The minimum number of edges in a k— commec’(eol qraph quh

n verfices is rueT,

Proot

This is an example of an extremal problem:

— There cannot be fewer edges in a k—connected graph, Since 6 is k—
connected, the minimum degree is at most k., Then, there must be at

least Mm< edges.

— example of k—connected graphs with n vertices and ™| edges are

The Harary graphs.,



Edge—connectivity ®

What if we instead consider the number of edges we need fo remove
fo disconnect a graph?

Definition
A disconnecting set is a subset of edges F <€ such that 6—F has at
least 2 components, separating = disconnecting

The edge—connectivity is the minimum size of a disconnecting set, and
is nofed k' (G6). A graph is k—edge—connected if it has edge—
connectivity at least k,

Examples

> . 1< ? - w

K'(a)-=

Complete graphs have edge—connectivity n—1, You can prove if:

Let ScV be a verfex subset of a connected graph 6. Let (S,51 be the
set of all edges with one endpoint in s and one in S, Then (S,S7 is
an edge cuf,

[s5'] )
tdge cut Z I~ Disconnecting set

Not an edge cuf —> %

tdge cut e Minimal disconnecting set



Connection to vertex—connectivity

Theorem (Whitney, 1932)

®

1t 6 is simple, Then k(G)=k'(6)<6(G). In words: vertex—connectivity

is at most edge—connectivity, which is always af most fhe smallest
degree.

Example of inequalities

k(G)<k'(6)=5(a) k(G)=k"(6)<d(4) K(6)<k' (6)<6(6)
\ 1

Proof

We first prove k' (6)<6(6). Let v be a verfex with degree 6(6).

The edge cut for the set vy has 6(G6) edges, so an edge cuf with
6(6) edges exist, and the minimum edge cut has size at most 6(a6).

We also need to prove k(G6)=<k'(G), To do so, we sfart with a
minimum edge cut, and construct a vertex cut with at most the same
size, If This process is always possible, that proves the desired
inequality.

Consider a minimum edge cul (S,V=51, There are two cases:

— If every verfex of S is connected fo every verfex of V=5, fhen
#(S,V=51-1S[IV=S|= |VI=1, Also, by definition, k(G)=IVI—1,
So k(G)= IV|—1 = #(S,V=S1=k" (G6) (the lasT equality is because The
minimum edge—cut is the minimum disconnecting set,

— Otherwise, fhere is one vertex x in S and y not in S that are not
adjacent, We construct a set of vertices T:

— All neighbors of x in v=5,
— Al vertices of s\ixi that are adjacent to verfices in v-5,



Then, T is a verfex cut: There is no way o go from x fo y without

passing through one edge of T, so 6—T is disconnected, We need

To show that T has at most #(S, V=S1 vertices,

For each vertex T of T:

— If tis a neighbor of x, fhen xt is in the
edge cut,

— It Tis in S, then 1 is adjacent fo af least
one verfex u in V=S, Then ul is in the edge cuf,

Gl

No edge is counted fwice in this list, because x is not in T,
Since every edge in this list is in the edge cut, then [TI= #(s, V-5,
and k(6)=k'(G).

i

Proposition
Lef 6 be a connected graph., Then, an edge cut F is minimal if and
only it 6—F has exactly fwo components,

Remark

1 we veplace minimal by minimum, then the statement becomes
false: 6—F can have fwo components while fthere are edge cufs with
size smaller than |FI,

2 . 7
=S IN

With your study group, try To agree on an explanafion of why this is
True.




Edge connectivity for regular graphs ©

Theorem
1t 6 is a 3—reqular graph, then k(6)=k'(G).

Proof

We already know that k(G6)=<k'(6), in general., To prove the statement,
we only need to show the reverse inequality (=), that is, from a
minimum verfex cuf, create an edge cut of the same size,

Lef S be a minimum verfex cut, and let H and T be fwo components of
6—S, Since S is minimum, every vertex of it has a neighbor in H and a
neighbor in T, Also a vertex cannot have at least two neighbors in both
H and T since G is 3—reqular, For each verfex v in S, delete the edge
from v fo the component in which it has only one neighbor (if there is

one neighbor in H, one in T and another one (in s for example),
delete the edge to H).

That process breaks all the paths between H and T, so the delefed
edges torm an edge cut., Also, the size of that edge cut is [SI, which

proves the statement,
)

Refevence: Douglas B, West, Introduction to graph theory, 2nd edition, 2001, Section 4.1
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We keep looking at the interconnections befween edge—connectivity and
vertex—connectivity, We also consider what it means tor cycles and
paths,

Blocks

Is a connecled graph with no cut—vertex 2—connected?

e e—®

Connectivity o ConnecTivity 1

Definition

A block of a graph G is a maximal connected subgraph that has no
cut—verfex,

Properties

— Isolafed verfices, as well as “isolafed edges* (isolafed copies of K)
are blocks,

— A cycle is always 2—connected, so it is always inside the same block.

— Since the only edges that are not in cycles are cut—edges, an
edge with ifs fwo enpoints is a block if and only if it is a cut—edge.

— Blocks in a free are edges (along with their two endpoints).

— Blocks in a loopless graph are its isolated vertices, ifs cut—edges
and ifs 2—connected components,

Proposition
Two blocks in a graph share at most one vertex,

Proof

By contradiction, If fwo blocks A and B share vertices u and v, they
are connected components with no cut—vertices inside, They are also
maximal, so it we extend fheir size, we will be creating a cut—
verfex,




Since fhere is a path from u fo v in A and one
in B (because blocks are connected), there is a
cycle containing u and v, and A and B form
fogether a 2—connected component. Hence, they
are in The same block,

=

Proposition
I1f two blocks share a verfex, if is a cut—vertex.

2—connected graphs
Two paths from u fo v are internally disjoint if they have no common
infernal vertex, —

AA \

Theorem (Whithey, 19432)
A graph with at least three verfices is 2—connected it and only it
there exist infernally disjoint u,v—paths tor each pair u,vi.

Proof

< Since there are af least 2 disjoint u,v—paths tor every pair wu,vi,
u and v cannot be separated by removing one vertex, This is true
for all w,vi, so the graph does not have connectivity 1. IT must
have connectivify at least 2, and is hence 2—connected.,

= By induction on d(u,v), the disfance befween u and v,
Base case: u and v are adjacent., Since the graph is 2—connected,
it is also 2—edge—connected, and removing edge e=wu,vi lets the
graph connected, which means there is a path befween u and v
avoiding e,
Induction hypothesis: If distance is k=d(u,v), there exists two
internally disjoint uv—paths,
Induction step: Let u and v be at distance k+1, and let P be a
uv—path of (minimal) length k+1, Let w be the vertex on P atf
distance k of u, so w is adjacent to v, and P' be that porfion of

P,
A Wy
P @——@/-Q. - O—&
—

?\



By induction hypothesis, there exist two infernally disjoint uw—paﬂ@
P oand Q'.

If Q' contains vertex v, let @ be the portion from u

fo v in Q'; then Q is a uv—path thaf is infernally disjoint from P,

Oftherwise, consider 6—w. IT is connected since there is no cut—
verfex, So there is a path R between u and v avoiding w, If it
avoids P or @, R is infernally disjoint from it, Otherwise, let x be

the last vertex of R that also belongs fo either P R
or Q. It x belongs to @, then P is disjoint oo Yo\ Y
trom the part of Q befween u and x and trom the G

part of R between x and v, which is a path from u to v (f:lisjoivﬁ
from P). It x belongs fo P, the argument is similar, .

Corollary

For a graph with at least three vertices, the following conditions are

characterization of 2—connected graphs:

(A) 6 is connected and has no cuf—vertex,

(B) For every pair of verfices w,vi, there are infernally disjoint u,v—
paths,

(C) For every pair of verfices w,vi, there is a cycle through u and v,

Menger's theorem

Given two verfices u and v, a uv—cut is a set of verfices S “E\l

such that 6—S has no uv—path,

v
Let k(u,v) be the size of a minimum uv—cut.

Proposition
Tor u and v vertices of 6, k(u,v)=k(a).

Proof
A v—cut makes the graph disconnected, so the connectivity is at most
fhe size of a uv—cuf,



Let A(u,v) be the maximum number of internally disjoint uv—paths, ®

Proposition
For u and v verfices of a6, k(u,v)=Alu,v).

Proot
We need fo delefe at least one vertex per path, and no vertex belongs

fo Two paths,
/:”__;/R_/\.L, Minimal uv—cuf, size 4
w Minimal wx—cuf, size 3

In fact, one can get a much stronger result:

Theorem (Menger, 1921)
It u and v are not adjacent, the minimum size of a uv—cuf is the
maximum wnumber of infernally disjoint uv—paths,

Proot (optional): vead in the fextbook, proot of theorem 4.,2.117.
We will see another proof with the Ford—Fulkerson algorithm next
week Monday,

Reference: Douglas B, West, Introduction to graph theory, 2nd edition, 2001, Sections 4.1 and 4,2
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We progress in our journey To analyzing flow in a nefwork, We first
introduce line graphs (and digraphs) fo express dual problems, and
then move on to nefworks, flows and capacity,

Line graphs

Goal: Introduce a way fo translate edge Menger's theorem and other
resulfs on paths in ferms of edges,

Let 6-(V,E) be a graph, Its line graph L(G) has verfices E, and
edges of L(G) exist for fwo edges of G (vertices of L(G)) if they
are incident to the same verfex in a.

)

/<]4 6 - o Q> )

(4

Properties

— The number of edges in L(G) is S (%)

— In geveral, 6 =L(4G). -

— For a graph with no isolated vertex, 6 is disconnected iff L(G) is.

The same can be done with digraphs, In this case, there is a directed
edge from e in € fo T it there is a path in D=(V,E) from e 1o f.

_}a/,é’/}h Q./};??a Q///E}a

Theorem

1t u and v are disfinct verfices in a graph (or digraph) 6, then the
minimum size of an uv—disconnecting set (of edges) equals the
maximum size of pairwise edge—disjoint uv—paths,



Sketch of fhe proot @
Use Menger's Theorem with L(G).

Deleting an edge in 6 is equivalent fo delefing a vertex in L(G). So
the minimum size of a uv—disconnecting set in 6 is the minimum size of
a uv—cul in L(G). By Menger's theorem, this is the maximum wnumber of
infernally disjoint uv—paths in L(G), which correspond fo edge—disjoint
paths in 6.

Covollary

The edge—connectivity of a graph (or a digraph) is the maximum
number k such that there is at least k edge—disjoint uv—paths for all
pairs of verfices wu,vi.

Maximum Network Flow

A nefwork is a directed graph with a nonnegative capacity c(e) on each
edge e. A nefwork has distinguished vertices: a source s and a sink T,

e—

A tlow f in a nefwork assings a value f(e) to edge e. For verfices,

we write f+(v) for the fotal flow of the edges leaving v and f-(v)
for the flow entering v.

A ftlow is feasible if

— o<f(e)=c(e) for every edge e. Capacity consfraint

— f+(v)=f-(v) for every vertex except source and sink
Conservation constraint

Pl ey AN o capacify

A feasible D \ 4 i
flow s t

. flow

The ﬂue of a flow is the net flow of fhe sink (f-(1)=f+(1)).
A maximum flow is a feasible flow of maximum value.

1|
) L T ot 11 "/_}_ll/\ L ,
. rl .
Maximal flow t P A .+ Maximum flow
°1 " 1 \%

n N
Value 1 Value 2




To increase the value of a maximal, buf not maximum flow, we use
f—augmenting paths, P is an t—augmenting path if

— it is going from source to sink,

— when P follows e in the forward direction, f(e)<c(e).

Lef e(e)=c(e)—Tf(e).

— when P follows e in the backward direction, f(e)yo. Let e(e)-=f(e).
The tolerance of P is the minimum value of e(e) over edges in P,

| ) Lemma
1t P is an f—augmenting path with folerance 2,

501 O ' Then we can create a flow ' with value
® H value (f)+2z in the following way:
Tolerance 1 — if e not in P, f'(e)-f(e)

— if e is forward in P, f'(e)-f(e)+z
— if e is backward in P, fr(e)=t(e)—=2.
Proof

We must prove that £+ is a flow (capacity and conservation
constraints) and fhat fhe result has value 2z higher than the value of f.
Capacify: It e is forward in P, then the folerance of e was higher than
2, so he can increase ifs flow by =,
1t e is backward in P, then ifs flow is reduced by 2, and it
originally was higher than z, so it is still nonnegative,
Conservation: if v is in P (but is neither s nor 1), it has either two
in—edges (one forward, one bacward), fwo out—edges
also one each way), or one in— and one out—edge (in
the same direction).,
1t the two edges are entering v, the flow for the e,
‘/I/C\ the forward edge, is increased by 2z, and the flow for e
> is decreased by z, so the enfering flow is unchanged, and
the conservation property is maintained,
The case of two out—edges is similar, as the exifing
flow is decreased by z for the backward edge e, and
V/Q’\ increased by 2z for e',



J 1f the flow is forward for the two edges, one is ®
e - ¢ enfering and one is leaving, and fhey are both increased
by 2. Hence, fr+(v)=f+(v)+z=f-(v)+2-f"-(v).

1t the flow is backward for both edges, the proof is
M\ similar, as the flow is decreased on both edges,

In all cases, the conservation and capacity constraints are satisfied, so
the flow is feasible,

The flow is increased by 2: P ends at the sink, So P is enfering the
sink, and £ -(1)=f-()+2 and £ +(1)=£+(1) Therefore,

value (f')=value (f)+z, =

Source /sink cut

Given a partition of the vertices in a nefwork with source s and sink

f, consider a parfition of the verfices info a source sef s

(containing S) and a sink sef T (with 1), A source/sink cut is an edge
cut (S, T1, Ifs capacity, cap(S,T), is the total capacify of the edges
from s fo T,

Capacity 2 Capacify 4

Teaser for nexf class.

Theorem (Max—flow Min—cut, Ford—Fulkerson, 145¢)
The maximum flow in a network is the minimum capacity of a source/
sink cut,

reference: Douglas B, West., Infroduction to graph theory, 2nd edition, 2001. Sections 4.2, 4.3
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Recall from last lecture the tollowing theorem (nof yet proved):

Theorem (Max—Fflow Min—cuf, Ford—Fulkerson, 14ss)
The value of a maximum flow in a nefwork is the minimum capacity of
a source/sink cut,

Our goal for foday is fo prove if,
Proposition

Let f be a feasible flow., Any source/sink cut has capacity af least

value (1),

~l

Capacity 2

Proof

Consider a source/sink cut (S, T1.

Recall that the capacity of the cut is the total capacify of the edges
from S to T, For each edge e in (5, T1, f(e)=c(e).

Also, every path from the source to the sink uses edges from s to T;
otherwise, it contradicts the fact that (S, T1 is a cut.

Finally, the value of a flow on a path cannot be higher than the
capacify of any edge of the path, Since every path passes through
(S, T1, every path has maximum capacity that of fhe edge(s) it uses
from the cut,

Hence, the tofal capacify of the cut is af least the value of the flow,

We have that, for any flow f and any source—sink cut (S,T1,

value (f) = capacity((s,T1).



That means that if we find a flow with value k and a cut with @

capacity k in the same network, the flow is necessarily maximum and the
cut is necessarily minimal,

Max—tflow: Ford—Fulkerson algorithm

Just as in Dijkstra's algorithm, Ford—Fulkerson's algorithm relies on

the principle of visiting and reaching vertices, The goal is to find
a maximum flow and a minimum cuf,

Algorithm to increase the value of a flow, if possible

ol [

5 O 4 s Iy 24
o). oL O 17
9\ 'y ' \
Value o Value 1 Value 2

Maximum flow

Inpul: A feasible flow f (can be the flow that has 0 on every edge)
output: An t—augmenting path or a cul with capacity value(f)

2 sefs of vertices that we update: S (source sef) and R (reached).,
First, R=isi and S is empty,

Iteration: As long as B=S, and 1 is nof in R,

Choose v In R—S,

— For each edge vw with f(vw)<c(vw) and w&R, add w to &,
For w, record that you reached it from v,

— For each edge uv with nonzero f(uv) and ugr, add u to g,
For u, record Thal you reached it from v.

After visifing all the edges incident fo v, add v fo s.

1f 1 is veached, we found an augmenting path, Return it (using the
recorded vertices), If R-S, fhere is no possibility of f—augmenting
path, so (S,V=S1 is a source—sink cul,



To get a maximum flow: ®
Start with the zero flow, and use the former algorithm fo find an
augmenting—path, When you get a cut, the flow is maximal,

ol — 0L °F\OW .
- o t -Capacity
> o - Visited vertices (S sef)
v ok -Reached vertices (R set)
ol A\ . . .
oy A o . Or alternatively | Starfing with a
| I
2-5 o t | e Ol e | different flow:
oL | ol oL | { w
Ol “w '
v 9 x : 5@*—‘” : I AN
o1 +
e a1
ws 30U W I Vs 9L« | 0 Vv
5 | | v |\><
o oL . I~
3% o1 t : augmenting—path : Sh e 1y | . R-C
o) oL ! (s, u, w, 1) b | o £
Ve e O x¥ : : 2 O
4~ ! ! o
L ol oY, e | I 5
s : t, augmenting—path | | ook
o) oL (S/ Vi, %X, T) : :
Vg O\ x\ | |
' ]

Max—Flow Min—=Cut Theorem

Theorem (Max—flow Min—cut, Ford—Fulkerson, 14ss)
The value of a maximum flow in a nefwork is the minimum capacity of
a source/sink cut,

Sketch of proof

The key is To use the algorithm, starfing with any feasible flow,

— 1t it ferminates with T, we found an augmenting path: all the edges
going forward are nof used at full capacity, and all the edges
going backward have nonzero flow, This means we increase the flow
by The tolerance of the augmenting path,

— If it ferminates with a cuf, the flow is maximal because fhe edges
leaving S are al maximal capacify,

Reference: Douglas B, West, Introduction fo graph fheory, 2nd edition, 2001, Section 4.3



Math 3¢ — Graph Theory Nadia Lafreniere
Graph colorings 05/1/ 20272

Recall from the very first lecture the following problem:

Scheduling and avoiding conflicts

My high school used to have a very long exam sessions at the end of
fhe year, and there were still some conflicts, I wish fhe administrators
knew graph Theovy..

Vertices: SubjecTs
Edges: 1t someone fakes both subjects,

P\ Pusiodl e eventual scheduling conflicts,
//OEolucaTlon

Mat \\\\/\ Intuitive definition:

Chemist A proper coloring of a graph is a partifion

SC“?O{"‘\e: | ot the vertices into independent sefs,
1, History—English—PE

2., Chemistry
3, Math

English Hls’(om

Scheduling with no conflicts is equivalent to
coloring.

1t we want to use fhe minimum fime, we
should use as few colors as possible,

Definifion

A k—coloring of a graph 6 is a labeling of the verfices using labels
from a set of size k (called colors, even though the labels can be
numbers, for example),

The vertices of one color form a color class,

A coloring is proper if no fwo adjacent vertices have the same label,
A graph is k—colorable if it has a proper k—coloring.
The chromatic number x(6) is the least k such fhat 6 is k—colorable,

In a proper coloring, every color class is an independent set, The
chromatic number is the smallest number of independent sets fhat
partition the verfices of a graph,



Example @

The Pefersen graph has chromalic number 3:

— 11 is not 2—colorable, because ifs verfices cannot be divided into
fwo independent setfs; it would ofherwise be bipartite,

— It is 3—colorable, as shown on the right,

Notice thal the chromatic number is an extremal problem:
we need fo show it is minimal and that a proper coloring
exists,

Colorings for non—simple graphs

Graphs with loops do wnot admit proper colorings: a vertex thatf is
incident to a loop could not be colored,

Every loopless graph can be colored: a frivial coloring where every
vertex has a disfinct color would work,

Multiple edges don't change anything to colorings, as fwo adjacent
vertices cannot be colored the same color regardless of the number of
edges befween them,

Optimality
A graph G is k—chromatic it k=x(G); a proper k—coloring is Then an
opfimal coloring.

It x(H)<x(6)=k for every subgraph H of G, then G is k—critical or
color—critical,

Examples

k=1 ® k=3: The 3—crifical graphs are the ; X
smallest graphs that are not bipartite: Not 35—

k-0 e these are the odd cycles, s/f> critical
L



No general characterization of 4—critical is known, ®

First bounds on the chromatic number

The cligue number of a graph, writfen w(G), is the maximum size of a
cligue in G, (Recall that a cligue is a complefe subgraph).

Also, recall that the independence number, a(G), is the size of a
maximum independent set,

Proposition
For every graph 6-(V,E), x(6)=w(6) and x(6)=IVI/a(G).

Proof

1f there is a clique of size k, the k vertices in the cligue must be of
different colors,

For the second inequalify, rewrite it as x(G)a(a)=IVI. x(G) is the
number of color classes, and a(G) is the maximum size of a color class.

The chromatic number is not necessarily The size of the maximal clique:
Q Maximal cligue has size 2
ChromaTic number is 3
Example: Mycielski's construction
From a simple graph G, consfruct a graph G' in the following way:
Let H and H' be two copies of G, but delete all edges from H', If
vertices u and v are adjacent in G, draw an edge between u in H and

v' in H' (The copy of v in H'), Add an exfra verfex x and connect it
fo all the vertices in H',

> \

R

Notice that u and u' are never adjacent,



1t 6 has chromafic number k, then G' has chromatic number k+1: ®
The colors in H and in H' can be fhe same., In G, u and v can have
the same color if fhey are not adjacent, Hence, u and v' (as well as
v and u') are not adjacent in 6*, so They can have the same color.
Hence x is the only vertex with a new color added,

So graphs obtained by iterafing this process can have arbifraty large
chromatic number,

Question: What is the cligue number of a graph obtained with the
Mycielski*s contruction?

Mycielski*s construction is used to build triangle—free graphs with
arbitrary large chromatic numbers:

IR

1t we sfart from a friangle—free graph, the Mycielsky construction is
friangle—free,

Greedy coloring algorithm

— Order fhe vertices 11,2,.,n1. We will color the verfices using numbers
1,2,

— For every verfex (in order), label it with the smallest color nof
already in use in its neighborhood,

Example




graph cannot be colored
with fewer Than 4 colors.

In this case, it is < \ ®
actually minimal, This m\’
| g “ 10
]‘"\

The coloring does not always use the minimum number of colors:
G
% 1
20—/° g
=y
/
. © Y

Proposition
The chromatfic number is at most A(G)+1,

Proof

The greedy algorithm descrived above yields a proper coloring, In fhe
worst case, all neighbors of one verfex have distinet color, and we
must add a color, When this happens, the number of colors is one
more than the wnumber of neighbors; that is af most A(G)+1.

Reference: Douglas B, West, Infroduction to graph theory, 2nd edition, 2001, Section 5.1,
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Last class, 1 introduced proper colorings of graphs, and fhe chromatic
number, We also looked at some bounds on the chromatic number,
and we keep exploring bounds on the chromatic number foday.

So far, we know:

— The chromatic number can be bounded in ferms of the independence
number and the cligue number: x(6)=w(6) and x(G6)=IVI/a(G).

— The chromatic number can be bounded in terms of the maximum
degree: x (6)=<A(G)+1,

These bounds are easy to check, but they are not the best possible,

Another upper bound

Theorem (Brooks, 1941)
1t 6 is connected, and is not the complefe graph nor an odd cycle,
x(6)=A(6).

Examples and special cases

1f A(G)=0, tThen 6 has 1 vertex (because it is connected), and is thus
the complete graph., So no graph in this case safisfies the hypotheses
of the theorem.

It A(G)=1, then G has 2 vertices, and this is again the complete graph.,

It A(G)-=2, G is either a cycle or a path, Open paths and even cycles
are biparfife, so fheir chromatic number is 2, which also is the maximum
degree., 0dd cycles are excluded from by hypothesis of the theorem,

Complete graphs don't satisfy the inequality, as their chromatic number
is one more than the maximum degree (every vertex must have
different colors).



The hypothesis thal the graph is connected is needed fo avoid the (@
case of having only isolated vertices,

) . Not complefe, maximum degree is o,
Chromatic number is 1,

Notice that, whenever a graph with n verfices is not the complete
graph, the chromatfic number is at most n—1: Since there is af least
one pair of non—adjacent verfices in a non—complete graph, fhey
can be the same colors. So n colors are never needed if the graph
is not complete,

Example: Coloring the Petersen graph using the greedy algorithm

The Pefersen graph is 3—reqular,
1T safisfies the hypothesis of the theorem,
so it must have maximum degree 3, That

means fhere exists an ordering of the verfices
that allows i1,

Proot of Brooks' Theorem
We already inspected the case where the largest degree is at most 2,
so assume A(G)=k is at least 3,

1f 6 is nof k—vegular:

Then, there is a verfex v with degree less than k, Let T be a

spanning free in G (which is possible since the graph is connected).,

We will use this spanning free tor ordering fhe verfices, The goal is

fo find the right ordering for the vertices, and then apply the greedy

algorithm from last lecture,

— Number verfex v with n (last verfex to be colored).

— Label the ofher vertices in decreasing order on paths leaving v in
T,

— Color the vertices using the greedy algorithm from last lecture,

Every Time we color a new verfex u (that is not v), fhere are at most

k=1 of ifs neighbors that have been previously colored, so k colors are

enough.,



For the last step, we know thal v has al most k=1 neighbors, so in ®
the worst case, a k—=th color will be necessary to color if,
In total, k colors are enough it the graph is not k—regular.,

q a g

: Y
’ | (A © ’ | L
10 10
% @
Y 2 \ 3 2 \

A similar process holds if the graph is k—regular, but there are two

cases:

— Theve is a cuf—verfex v, Then, G6—ivi is disconnected, and each
component can be colored with k colors, Place the colors in the
components so that vertices incident fo v have the same color in
both components,

Then, v can be colored using any other color, so G is k—colorable,

) [r—
v \J
>
G b

— Theve is no cuf—vertex, meaning that 6 is 2—connected,
1t 6 has a verfex v with fwo neighbors that are not adjacent v
u and w such that G6—iu,wi is connected, we can use a AN
similar argument, We label u and w by 1 and 2, and create a o e
spanning Tree in 6—u,wi, Starting from v, we label the vertices in
decreasing order and obtain a proper k—coloring of 6 because the
last vertex has two vertices (u and w) colored the same,




®

1 claim there is always such a friple of verfices when G is 2—connected
and k—reqular, with k=3, (The defails of this are in the textbook.) g

Subgraph, cligues and chromatic number

Proposition
It His a subgraph of G, x(H)=x(a4).

Proof
All the edges of H are in G, so the vertices of G cannot be colored
with fewer fhan x(H) verfices (however, it we add edges, they might

need more colors).
o

This is similar To the proposifion we had in last lecture: x(G6)=w(a).
However, cligues are not needed fo have large chromatic number (as
exhibited by The graphs build using Mycielski's construction).

Proposition
Every k—chromatic graph has af least (ﬁ edges,

Proof

Consider an opfimal coloring of the graph., Since it uses the minimum
number of colors, there is at least one edge connecting two color
classes; otherwise, there are two classes (blue and red) with no edges
between the two classes, and all the red vertices can be colored blue.
Hence, we need at least one edge per pair ot colors, that is (¥
edges,

This is achieved by complete graphs K, .

Reference: Douglas B, West, Infroduction fo graph theory, 2nd edifion, 2001,
Sections 5.1 and 5.2
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The problem: Counting the number of proper colorings of a graph G
with k colors,

— It x(6)>k, then this number is o,
— It x(6)<k, we must first choose which colors will appear, and fhen
count the number of colorings with these colors,

NotaTion

Given a graph G, the value x(6:k) is the number of proper colorings of
G with k colors.,

Examples

— When 6 is the complete graph with n vertices, x(G:k)=k(k—=1). (k—n+1),
This number is also (<) N

— When 6 is the graph with n verfices and no edge, x(6:k)-K",

— If T is a tree with n vertices, x(T:;k)=k(k=1)"",

— 1f P is a path with n vertices, x(T:;k)=k(k—1)~,

W o <

The chromatic polynomial of 6 is the polynomial x: kex(G:k),

Computation of the chromatic polynomial
A naive algorithm

Proposition
Let p(G) be the number of parfitions of the n vertices ot G info v
independent sefs, Then, the chromatic polynomial of 6 is

n n

> 6)(F)rt = 2 pn(6) k(= 1) (k=) (h =+ )

r=1 r=1

This is a unitary polynomial in the variable k of degree n, i.e. fhe
leading term is k",



Proot @

Given a coloring of G, the color classes parfition the vertices of G
into independent sets, If we have exactly v independent sets, there
are (¥\r1 ways ot coloring them with v colors, Also, the number of
color classes can be any number between 1 and n,

As for the maximum degree, it will happen when v is maximal, Since
there is exactly 1 partition of fhe vertices into n independent sets (of
size 1), the leading term is k",

Example
Computing the chromatic polunomial of the cycle of length 4,

o, [
oy ol 1

R(C)=0 o [C)=! ALY

Hence,
WKz (52 2(3)2 ¢ ()
 k(k=1)+2k(k=1) (k=2) +k(k=1) (k=2) (k=3)

= k(k=1) (1+2(k=2)+(k=2)(k—=3))
= k(k—=1) (k*—3k+3)

Chromatic recurrence / Deletion—contraction

Theorem
1t 6 is a simple graph and e is an edge of if, then

x(G:k)= x(G6—e;k)=x(Ge;k), where -is The confraction operation used
for counting spanning trees.,

Notice that here, unlike with spanning frees, we may delete mulfiple
edges at every step,



Example ©
ALCe= X (TR = KA = k(k=1)® =k(k=1) (k=2) = k(k=1) (K2 =3k+3)
R T

[ “
Proot
The two endpoints of e cannot be colored with the same color, Hence,
the wnumber of proper colorings of G is the number of proper colorings
without this edge, except those where the two endpoints are colored

with the same color. -

Proposition
The chromatic polynomial of the cuycle of size n is (k=1)" +(—1)" (k—1),

Proot

We proceed by induction,

Base case: n=2, This is the complete graph (plus a mulfiple edge), so
The chromatic polynomial is k(k—=1), This is equal To (k—=1)%+(k—1),

Induction step: Assuming the chromatic polunomial of the cycle of
length n is (k=1)"+(—=1)" (k=1), we wanf fo prove thaf that of the
cycle of length n+1 is (k=1p*+(—1)*(k=1),
Using deletion contraction,
A G ) 2 X (Prside) = K CCni )
e k(k=1)" =((k=1)" +(=1)"(k=1))
mpothesis = (k=1)"" + (=1)""(k=1)

Proposition
Lef 6-(V,E) be a graph, The second ferm of x(6:k) is —#E k.

Sketch of proof

We use the vecurrence y(G:k)- x(6—e:k)—x(G-e:k) and induction on the
number of edges., We do the proot on connected graphs.

When there is one edge, x(G:k)- k*—k,




®

Induction step: G has one more edge than G—e, and the same

number of vertices, By induction hypothesis, the second term of
x(G—e;k) is (—#E+1)K™) and x(G:k) and x(G6—e;k) have the same leading
ferm, Also, the leading ferm of x(G-ek) is k™

Conclusion: The second term of x(6:k) is (—#E+1—1)k

One last remark

Computing the chromatic polynomial looks much longer than compufing
fhe chromatic number, but the chromatic number is very hard fo
compufe in general, If fhe graph does nof permit to use a shortcut
for compufing its chromatic number, it is easier fo compute its chroma—
fic polynomial and fo check which positive integer is nof a voof of the
polynomial,

Reference: Douglas B, West, Infroduction fo graph theory, 2nd edifion, 2001, Section 5.3
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The goal ot today's lecture is fo give a shorfcut tor computing the
chromatic polynomial of many graphs.

Geometry Graph theory

Simplex (friangle, Complete graph

tfetrahedron, etfc.) - o~ A

S v oA a g

——

Simplicial complex Chordal graph, i.e,
(gluing simplices together) graph that admit a simplicial
Every face of a simplicial elimination ordering.

complex is a simplex,

A 5 A
4 A8 &
A Y |

A vertex is simplicial if ifs neighbors torm a clique.,

& —= Simplicial
w Not simplicial

A simplicial elimination ordering is an ordering of the vertices v, .., v
such that the verfex v is simplicial in 6=, .,v, )




Example @
— For complete graphs, any ordering is a simplicial elimination ordering.
— For trees, an ordering starting af fhe leaves and going inwards is

a simplicial elimination ordering.
— The cycle of length 4 has no simplicial ordering. [j

Proposition

The chromatic polynomial ot a graph with simplicial ordering v,.,v s
the product of the k=d'(v)'s, where d'(v) is the degree ot v_ in
the induced subgraph with vertices (v, .., v,

Example

% 1o 8w

|\ —F »
AL

7 3 o i\

x(G:k) = k (k=1)(k=2)%(k=3)

Sketch of proof

When it is added, v, has d'(v) neighbors, all colored with different
colors, so there are k—=d' (v) options for coloring it., Doing this
process, we count all the o{ﬁioms for coloring the graph with k colors,

Chordal graphs

A chord of a cycle C is an edge not in C whose endpoints are in C,

Chord
Nof a chord

A cycle is chordless it if has length at least 4 and no chord,

A graph is chordal if it is simple and it has no chordless cycle (as
induced subgraphs).




Theorem (Dirac, 1961)
A simple graph has a simplicial elimination ordering if and only if it is
a chordal graph,

Lemma (Voloshin, 1982, or Farber—Tamison, 14gs)
Every chordal graph has a simplicial vertex,

The proot of the lemma is omitfed, It is in the textbook as Lemma
50301be

Proof of fhe theorem

= (confrapositive) If if is not chordal, there is a chordless cycle C,
In C, that has length af least 4, none of the vertices is simplicial,
and no verfex can be the first one fo be picked in C for the
ordering.,

= Using the lemma, we know that every chordal graph G has a simplicial
verfex v, Delefe v, Then G6—1vi is chordal, so we can apply the
lemma again, creating an ordering.

Acyclic orientations

What is the meaning of x(6;—1)?

An orienfation of a graph 6 is a digraph that has 6 as an underlying
graph.,

NU NP D

orientation acyclic orientation

An orvientation is acyclic if it has no cycle,




®
Theorem (Stanley, 1972)

The absolute value of x(6;=1) is the number of acuclic orientations of
G

Proof is in the fexfbook, as the proot of Theorem s5.3,21.

Examples

|

\ /, . .
wa has chromatic polunomial x(G:k)= k(k=1)(k=2)2(k=3), so
it has 712 acyclic orientations.,

2 3

C, has chromatic polynomial x(CH;k)=\<(k—1)(k1—3k+3), and x(Cy:—1)

= 030
]

I

/N

AN Vg

Iy 0 RN
Reference: Douglas B, West, Infroduction fo graph theory, 2nd edition, 2001,
Section 5,3,
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Is it possible to connect the three houses to the three ufilites, without
connection befween fwo ufilities nor connection between two houses? No

crossing is allowed,
‘ t')

& n
© 0 © ,

(Answer is furfher in the notes).

Planar graphs

Intuifively, a graph is planar if it can be drawn on a plane in a way such
fhat no two edges cross,

b < S A

K, is planar

not p\amav P\amy

A drawing of a graph is a geometric object, whereas the graph does not
depend on the drawing. A plane graph (or planar embedding) is a
drawing of a graph without crossing,

A tace of a plane graph is a maximal region without a point of a curve
for the drawing.

=) a6




The ouferface is the unbounded face., It is unique for a finife qvaph,@

Dual graphs

Given a plane graph G, we construct its dual, 6* in the following way:
— The faces of G become the vertices of 6%,

— The edges of 6 are connections between fwo adjacent faces. For

every edge in G, connect the fwo faces in 6* by drawing an edge
between the fwo verfices of a6*, ’

Remark
Even when G is a simple graph, G6* might have multiple edges or loops.

Example (fhe paw)

N

Example

Proposition
1— The dual graph is planar,
2— 6**= 6 if and only if 6 is connected,

Proof of 1

Edges in the dual graph do not cross; they represent adjacency
relationships, If they had fo cross, that would mean two adjacent faces
are in befween two other adjacent faces D and F, If there is no way

fo draw an edge between D and F without crossing, fhen they cannot be
adjacent,

®



Remark @

Two drawings of the same graph can have non—isomorphic duals,

1 A

No vertex with fwo loops
in the dual.

However, some properties will vemain the same, like the number of faces,
verfices and edges in the dual (if The graph is connected).

The length of a face in a plane graph is the total length of the closed
walks in G bounding these taces (including the confour of the edges).

4 P — Eo[cae counted twice, since [ g § ObSGV\/a‘hOV]
a :hofh{sio(es are neighboring 3/ g | The sum O‘F f‘ne \emqﬁhs
e face. . \
of the faces are equal.

Proposition
The sum of the length of the faces is fwice the number of edges.

Proof
This Is since every edge is neighboring either two faces, or it has both
sides of the edges in the same face,

Alternafive proof

The number of edges are fhe same in 6 and in its dual, The length of
a face in G is the degree in 6%, By the sum of the degrees formula,
fwice the number of edges is the sum of the length of fhe faces,




Theorem

LeT 6 be a plane graph., The following are equivalent,
(A) G is bipartite,

(B) Every face of G has even length,

(C) 6* is Eulerian,

Proof

(A)=>(B) Since G is biparfite, all cycles have even length, The length
of a face is the length of a closed walk, 6 cannot have faces of even
length, since every closed walk (including the boundary of a face)
contains an odd cycle, which would confradict the fact that fhe graph is
bipartite.,

(B)->(A) If every face has even length, there cannot be odd cycles in
G. Cycles are closed walks, so we will prove there is no odd closed walk
in G, The boundary of one face cannot be an odd closed walk, by
hypothesis, So an odd closed walk would need to be on the boundary of
mulfiple faces,

Assume it exisTs, The number of edges on the boundary of these faces
bul not in the walk, counted with multiplicity, would need to be odd.
However, since they are not in The walk (that is closed) they are counted
for two faces, so their total number is even, Hence, the

number of edges in the walk is also even., A contradiction, m

(8)<=>(C) The dual graph is connected. The vertex degree in 6™ is the
length of the faces in G, so it is always even, A connected graph has

only vertices of even degree if and only if it is Eulerian,
(4

Euler's Formula

Theorem (Euler, 175%)
LeT 6-(V,E) be a connected plane graph with f faces.
Then, |VI—|E|+f=2.

Key argument: this formula is also valid tor convex solids, and the
plane maps 1o the sphere (via stereographical projection).,



Corollary ©

All drawings with no crossing have the same wnumber of ftaces. The dual
graphs of G all have the same number of verfices,

Remark
It you draw graphs on surfaces fThat are not the plane (like the forus),
this changes. The number 2 here is called the Euler characteristic of the
plane,

Covollary
1t 6 is a simple planar graph with at least 3 verfices, then G has at most
3lVI—b edges., It it has no triangle, then [El=2|VI—4,

The key of the proof is that 21€l is the sum of the length of the faces,
and fhat each face uses at least 3 edges (4 if the graph has no triangle).

Example
’_P’ IVI= 5 e
_ M Biparfite => Triangle—Tfree
3IVI—b = 9
%%—% ) 2I1V|—4 = g
IEl= 10
Not planar e
v Not planar

Connection o geometry

Convex polyhedra have Euler Characteric 2. This is frue for Platonic solids.

Names V| IE| f VI—IEl+f
Cube g 12 b 2
Tetrahedron 4 b 4 2
Octahedron b 12 g 2
Icosahedron 12 30 20 2
Dodecahedron 20 30 12 2



Proposition
All platonic solids are planar graphs.

Tetrahedron Octahedron Hexahedron

Square pyramid Icosahedron Dodecahedron

Reference: Douglas B, West, Infroduction fo graph theory, 2nd edifion, 2001,
Section 6,1



