Math 38 - Graph Theory
Chromatic polynomial for chordal graphs 05/18/2022
The goal of today's lecture is to give a shortcut for computing the chromatic polynomial of many graphs.

Geometry Graph theory
simplex (triangle, tetrahedron, etc.)
simplicial complex
(gluing simplices together)
Every face of a simplicial complex is a simplex.

A vertex is simplicial if its neighbors form a clique.

A simplicial elimination ordering is an ordering of the vertices v_{n}, \ldots, v_{1} such that the vertex v_{i} is simplicial in $G-\left\{v_{n^{\prime}} \ldots, v_{i+1}\right\}$

Proposition

The chromatic polynomial of a graph with simplicial ordering v_{n}, \ldots, v_{1} is the product of the $k-d^{\prime}\left(v_{i}\right)^{\prime} s$, where $d^{\prime}\left(v_{i}\right)$ is the degree of v_{i} in the induced subgraph with vertices $\left\{v_{1}, \ldots, v_{i}\right\}$.

Example

Sketch of proof
When it is added, v_{i} has $d^{\prime}\left(v_{i}\right)$ neighbors, all colored with different colors, so there are $k-d^{\prime}\left(v_{i}\right)$ options for coloring it. Doing this process, we count all the options for coloring the graph with k colors.

Chordal graphs
A chord of a cycle C is an edge not in C whose endpoints are in C.

A cycle is chordless if it has length at least 4 and no chord. A graph is chordal if it is simple and it has no chordless cycle (as induced subgraphs).

Theorem (Dirac, 1961)
A simple graph has a simplicial elimination ordering if and only if it is a chordal graph.

Lemma (Voloshin, 1982, or Farber-Jamison, 1986)
Every chordal graph has a simplicial vertex.

The proof of the lemma is omitted. It is in the textbook as Lemma 5.3.16.

Proof of the theorem
\Rightarrow (contrapositive) If it is not chordal, there is a chordless cycle C. In C, that has length at least 4, none of the vertices is simplicial, and no vertex can be the first one to be picked in C for the ordering.
\Leftarrow Using the lemma, we know that every chordal graph G has a simplicial vertex v. Delete v. Then $G-\{v\}$ is chordal, so we can apply the lemma again, creating an ordering.

Acyclic orientations

What is the meaning of $\chi\left(G_{;}-1\right)$?
An orientation of a graph G is a digraph that has G as an underlying graph.

orientation

acyclic orientation

An orientation is acyclic if it has no cycle.

The absolute value of $\chi\left(G_{;}-1\right)$ is the number of acyclic orientations of G 。

Proof is in the textbook, as the proof of Theorem 5.3.27.
Examples

has chromatic polynomial $\chi(G ; k)=k(k-1)(k-2)^{2}(k-3)$, so it has 72 acyclic orientations.
C_{4} has chromatic polynomial $\chi\left(C_{4} ; k\right)=k(k-1)\left(k^{2}-3 k+3\right)$, and $\chi\left(C_{4} ;-1\right)$ is 14.

Reference: Douglas B. West. Introduction to graph theory, and edition, 2001. section 5.3.

