Math 38 - Graph Theory Nadia Lafrenière Chromatic polynomial for chordal graphs 05/18/2022

The goal of today's lecture is to give a shortcut for computing the chromatic polynomial of many graphs.

A vertex is simplicial if its neighbors form a clique.

A <u>simplicial elimination ordering</u> is an ordering of the vertices v_n , ..., v_n such that the vertex v_n is simplicial in $G - \{v_n, ..., v_n\}$

_

Proposition

The chromatic polynomial of a graph with simplicial ordering $v_1,...,v_n$ is the product of the k-d'(v_n)'s, where d'(v_n) is the degree of v_n in

Example

Sketch of proof

When it is added, v_i has $d'(v_i)$ neighbors, all colored with different colors, so there are $k-d'(v_i)$ options for coloring it. Doing this process, we count all the options for coloring the graph with k colors.

Chordal graphs

A chord of a cycle C is an edge not in C whose endpoints are in C.

Chord

the induced subgraph with vertices {v, ..., v,}.

Not a chord

A cycle is <u>chordless</u> if it has length at least 4 and no chord. A graph is chordal if it is simple and it has no chordless cycle (as induced subgraphs).

Theorem (Dirac, 1961)

A simple graph has a simplicial elimination ordering if and only if it is a chordal graph.

Lemma (Voloshin, 1982, or Farber-Jamison, 1986) Every chordal graph has a simplicial vertex.

The proof of the lemma is omitted. It is in the textbook as Lemma 5.3.16.

Proof of the theorem

- ⇒ (contrapositive) If it is not chordal, there is a chordless cycle C.
 In C, that has length at least 4, none of the vertices is simplicial, and no vertex can be the first one to be picked in C for the ordering.
- \leftarrow Using the lemma, we know that every chordal graph 6 has a simplicial vertex v. Delete v. Then $6-\{v\}$ is chordal, so we can apply the lemma again, creating an ordering.

Acyclic orientations

What is the meaning of $\chi(G;-1)$?

An <u>orientation</u> of a graph G is a digraph that has G as an underlying graph.

orientation

acyclic orientation

An orientation is acyclic if it has no cycle.

Theorem (Stanley, 1972)

The absolute value of $\chi(G;-1)$ is the number of acyclic orientations of G.

Proof is in the textbook, as the proof of Theorem 5.3.27.

Examples

has chromatic polynomial $\chi(G;k) = k(k-1)(k-2)^2(k-3)$, so it has 72 acyclic orientations.

 C_{4} has chromatic polynomial $\chi(C_{4};k)=k(k-1)(k^2-3k+3)$, and $\chi(C_{4};-1)$ is 14.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 5.3.