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Recall from the very first lecture the following problem:

Scheduling and avoiding conflicts

My high school used to have a very long exam sessions at the end of
fhe year, and there were still some conflicts, I wish fhe administrators
knew graph Theovy..
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Scheduling with no conflicts is equivalent to
coloring.

1t we want to use fhe minimum fime, we
should use as few colors as possible,

Definition

A k—coloring of a graph 6 is a labeling of the verfices using labels from
a set of size k (called colors, even though the labels can be numbers,
for example).

The vertices of one color form a color class,

A coloring is proper if no fwo adjacent vertices have the same label,
A graph is k—colorable if it has a proper k—coloring.
The chromatic number x(6) is the least k such fhat 6 is k—colorable,

In a proper coloring, every color class is an independent set, The
chromatic number is the smallest number of independent sets fhat
partition the verfices of a graph,



Example
The Pefersen graph has chromalic number 3:

Nofice thal the chromatic number is an extremal problem:
we need fo show it is minimal and that a proper coloring
exists,

Colorings for non—simple graphs

Optimality
A graph G is k—chromatic it k=x(G); a proper k—coloring is Then an
optimal coloring,

It x(H)<x(6)=k for every subgraph H of G, then G is k—critical or
color—critical,

Examples



No general characterization of 4—critical is known, ®

First bounds on the chromatic number

The cligue number of a graph, writfen w(aG), is the maximum size of a
cligue in G, (Recall that a cligue is a complefe subgraph).

Also, recall that the independence number, a(G), is the size of a
maximum independent set,

Proposition
For every graph 6-(V,E), x(6)=w(6) and x(6)=IVI/a(G).

Proof

1f theve is a clique of size k, the k vertices in the cligue must be of
different colors,

For the second inequalify, rewrite it as x(G6)a(a)=IVI. x(G) is the
number of color classes, and a(G) is the maximum size of a color class.

The chromatic number is not necessarily the size of the maximal clique:

Example: Mycielski's construction

From a simple graph G, consfruct a graph G' in the following way:

Let H and H' be two copies of G, but delete all edges from H', If
vertices u and v are adjacent in G, draw an edge between u in H and
v' in H' (the copy of v in H")., Add an exira verfex x and connect it
fo all the vertices in H',
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Notice that u and u' are never adjacent,



1t 6 has chromafic number k, then G' has chromatic number k+1: ®
The colors in H and in H' can be fhe same., In G, u and v can have
the same color if fhey are not adjacent, Hence, u and v' (as well as
v and u') are not adjacent in 6*, so They can have the same color.
Hence x is the only vertex with a new color added,

So graphs obtained by iterafing this process can have arbifraty large
chromatic number,

Question: What is the cligue number of a graph obtained with the
Mycielski*s contruction?

Mycielski*s construction is used to build triangle—free graphs with
arbitrary large chromatic numbers:
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1t we sfart from a friangle—free graph, the Mycielsky construction is
friangle—free,

Greedy coloring algorithm

— Order fhe vertices 11,2,.,n1. We will color the verfices using numbers
1,2,

— For every verfex (in order), label it with the smallest color nof
already in use in its neighborhood,

Example




In this case, it is < \ ®
actually minimal, This

graph cannot be colored \ 7 10
with fewer than 4 colors., : )
®

The coloring does not always use the minimum number of colors:
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Proposition
The chromatfic number is at most A(G)+1,

Proof

The greedy algorithm descrived above yields a proper coloring, In fhe
worst case, all neighbors of one verfex have distinet color, and we
must add a color, When this happens, the number of colors is one
more than the wnumber of neighbors; that is af most A(G)+1.

Reference: Douglas B, West, Infroduction to graph theory, 2nd edition, 2001, Section 5.1,



