
Math 38 - Graph Theory
Bounds on the chromatic number

Last class, I introduced proper colorings of graphs, and the chromatic
number. We also looked at some bounds on the chromatic number,
and we keep exploring bounds on the chromatic number today. 

These bounds are easy to check, but they are not the best possible.

Examples and special cases

Another upper bound

Theorem (Brooks, 1941)
If G is connected, and is not the complete graph nor an odd cycle,
χ(G)≤Δ(G).

So far, we know:
- The chromatic number can be bounded in terms of the independence
  number and the clique number: χ(G)≥ω(G) and χ(G)≥|V|/α(G).
- The chromatic number can be bounded in terms of the maximum
  degree: χ (G)≤Δ(G)+1. 
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Complete graphs
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Example: Coloring the Petersen graph using the greedy algorithm

Notice that, whenever a graph with n vertices is not the complete
graph, the chromatic number is at most n-1: Since there is at least
one pair of non-adjacent vertices in a non-complete graph, they
can be the same colors. So n colors are never needed if the graph
is not complete.

The hypothesis that the graph is connected is needed to avoid the
case of having only isolated vertices.

Not complete, maximum degree is 0.
Chromatic number is 1.

The Petersen graph is 3-regular.
It satisfies the hypothesis of the theorem,
so it must have maximum degree 3. That
means there exists an ordering of the vertices
that allows it.

Proof of Brooks' Theorem
We already inspected the case where the largest degree is at most 2,
so assume Δ(G)=k is at least 3.

If G is not k-regular:
Then, there is a vertex v with degree less than k. Let T be a
spanning tree in G (which is possible since the graph is connected).
We will use this spanning tree for ordering the vertices. The goal is
to find the right ordering for the vertices, and then apply the greedy
algorithm from last lecture.
- Number vertex v with n (last vertex to be colored).
- Label the other vertices in decreasing order on paths leaving v in
  T.
- Color the vertices using the greedy algorithm from last lecture.
Every time we color a new vertex u (that is not v), there are at most
k-1 of its neighbors that have been previously colored, so k colors are
enough.



3For the last step, we know that v has at most k-1 neighbors, so in
the worst case, a k-th color will be necessary to color it.
In total, k colors are enough if the graph is not k-regular.

A similar process holds if the graph is k-regular, but there are two
cases:
- There is a cut-vertex v. Then, G-{v} is disconnected, and each
  component can be colored with k colors. Place the colors in the 
  components so that vertices incident to v have the same color in
  both components.
  Then, v can be colored using any other color, so G is k-colorable.

no edge

- There is no cut-vertex, meaning that G is 2-connected.
  If G has a vertex v with two neighbors that are not adjacent
  u and w such that G-{u,w} is connected, we can use a 
  similar argument. We label u and w by 1 and 2, and create a 
  spanning tree in G-{u,w}. Starting from v, we label the vertices in
  decreasing order and obtain a proper k-coloring of G because the
  last vertex has two vertices (u and w) colored the same. 
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Subgraph, cliques and chromatic number

I claim there is always such a triple of vertices when G is 2-connected
and k-regular, with k≥3. (The details of this are in the textbook.)

Proposition
If H is a subgraph of G, χ(H)≤ χ(G). 

Proposition
Every k-chromatic graph has at least   edges.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001.
Sections 5.1 and 5.2

This is similar to the proposition we had in last lecture: χ(G)≥ω(G).
However, cliques are not needed to have large chromatic number (as
exhibited by the graphs build using Mycielski's construction).

Proof

Proof


