Math 38 - Graph Theory Connectivity and paths

Nadia Lafrenière

We keep looking at the interconnections between edge-connectivity and vertex-connectivity. We also consider what it means for cycles and paths.

Blocks
Is a connected graph with no cut-vertex 2-connected?
Connectivity 0 connectivity 1

Definition
A block of a graph G is a maximal connected subgraph that has no cut-vertex.

Properties

- Isolated vertices, as well as "isolated edges" (isolated copies of K_{2}) are blocks.
- A cycle is always 2-connected, so it is always inside the same block.
- since the only edges that are not in cycles are cut-edges, an edge with its two enpoints is a block if and only if it is a cut-edge.
- Blocks in a tree are edges (along with their two endpoints).
- Blocks in a loopless graph are its isolated vertices, its cut-edges and its 2-connected components.

Proposition
Two blocks in a graph share at most one vertex.

Proof

By contradiction. If two blocks A and B share vertices u and v, they are connected components with no cut-vertices inside. They are also maximal, so if we extend their size, we will be creating a cutvertex.

Since there is a path from u to v in A and one in B (because blocks are connected), there is a cycle containing u and v, and A and B form together a 2-connected component. Hence, they
 are in the same block.

Proposition

If two blocks share a vertex, it is a cut-vertex.

2-connected graphs

Two paths from u to v are internally disjoint if they have no common internal vertex.

Theorem (Whitney, 1932)
A graph with at least three vertices is 2-connected if and only if there exist internally disjoint $u, v-p a t h s$ for each pair $\{u, v\}$.

Proof
since there are at least 2 disjoint u, v-paths for every pair $\{u, v\}$, u and v cannot be separated by removing one vertex. This is true for all $\{u, v\}$, so the graph does not have connectivity 1. It must have connectivity at least 2, and is hence 2-connected.
\Rightarrow By induction on $d(u, v)$, the distance between u and v.
Base case: u and v are adjacent. Since the graph is 2 -connected, it is also 2 -edge-connected, and removing edge $e=\{u, v\}$ lets the graph connected, which means there is a path between u and v avoiding e.
Induction hypothesis: If distance is $k=d(u, v)$, there exists two internally disjoint uv-paths.
Induction step: Let u and v be at distance $k+1$, and let P be a $u v-p a t h$ of (minimal) length $k+1$. Let w be the vertex on P at distance k of u, so w is adjacent to v, and P^{\prime} be that portion of Po
$P: \underbrace{u}_{p^{1}} \underbrace{w}-0-0 \quad v$

By induction hypothesis, there exist two internally disjoint uw-paths, P^{\prime} and Q^{\prime}.
If Q^{\prime} contains vertex v, let Q be the portion from u to v in Q^{\prime}; then Q is a uv-path that is internally disjoint from P.

Otherwise, consider $G-W$. It is connected since there is no cutvertex. So there is a path R between u and v avoiding w. If it avoids P or Q, R is internally disjoint from it. Otherwise, let x be the last vertex of R that also belongs to either P or Q. If \times belongs to Q, then P is disjoint from the part of Q between u and x and from the part of R between x and v, which is a path from u to v (disjoint from P). If x belongs to P, the argument is similar.

Corollary

For a graph with at least three vertices, the following conditions are characterization of 2 -connected graphs:
(A) G is connected and has no cut-vertex.
(B) For every pair of vertices $\{u, v\}$, there are internally disjoint $u, v-$ paths.
(c) For every pair of vertices $\{u, v\}$, there is a cycle through u and v_{0}

Manger's theorem
Given two vertices u and $v, ~ a ~ u v-c u t ~ i s ~ a ~ s e t ~ o f ~ v e r t i c e s ~ s ~$ such that G-S has no uv-path.

Let $k(u, v)$ be the size of a minimum uv-cut.

Proposition

For u and v vertices of $G, k(u, v) \geq k(G)$.
Proof
A uv-cut makes the graph disconnected, so the connectivity is at most the size of a uv-cut.

Let $\lambda(u, v)$ be the maximum number of internally disjoint uv-paths.
Proposition
For u and v vertices of $G, k(u, v) \geq \lambda(u, v)$.

Proof

We need to delete at least one vertex per path, and no vertex belongs to two paths.

- Minimal uv-cut, size 4
- Minimal wx-cut, size 3

In fact, one can get a much stronger result:
Theorem (Manger, 1927)
If u and v are not adjacent, the minimum size of a uv-cut is the maximum number of internally disjoint uv-paths.

Proof (optional): read in the textbook, proof of theorem 4.2.17. We will see another proof with the Ford-Fulkerson algorithm next week Monday.

Reference: Douglas B. West. Introduction to graph theory, and edition, 2001. Sections 4.1 and 4.2

