Math 38 －Graph Theory Connectivity

Nadia Lafrenière
 05／02／2022

cuts and connectivity
A vertex cut（or separating set）is a subset of vertices S such that $G-\bar{s}$ has more than one component．
The connectivity of $G, k(G)$ ，is the minimum size of a separating set， if it exists，or $n-1$ ． A graph is k－connected if its connectivity is at least k ．

Examples

Disconnected $=$ connectivity o

Connected＝1－connected
Cycles of length at least 3 have connectivity 2
Petersen graph has connectivity 3 ．
Complete graph K_{n} has connectivity $n-1$ ．

Complete bipartite graph $K_{m, n}$ has connectivity minin，m\}。 By convention，we say the graph with one vertex has connectivity 0 。

Proposition
The connectivity of a connected graph is at most its minimum degree． Proof
One can isolate a single vertex by removing all the vertices around it． Remark
The connectivity of a connected graph is not at least its minimum degree．

Minimum degree 2，but there is a cut－vertex \Rightarrow connectivity 1。

The hypercube H_{k} has connectivity k.
of course, since it is k-regular, it has connectivity at most k. We can prove by induction it has connectivity at least k :

Example: Harary graphs
Harary graphs $H_{k, n}$ are graphs with n vertices and $\left\lceil\frac{n k}{2}\right\rceil$ edges, $2 \leq k<n$, being as regular as possible.
They have connectivity k :

- k is the minimum degree of $H_{n, k}$

There is a proof in the textbook that it has connectivity at least k.

Theorem (Harary, 1962)
Let $k>2$. The minimum number of edges in a k-connected graph with n vertices is $\left\lceil\frac{n k}{2}\right\rceil$.

Proof

This is an example of an extremal problem:

- There cannot be fewer edges in a k-connected graph. Since G is $k-$ connected, the minimum degree is at most k. Then, there must be at least $\left\lceil\frac{n k}{2}\right\rceil$ edges.
- Example of k-connected graphs with n vertices and $\left\lceil\frac{n k}{2}\right\rceil$ edges are the Harary graphs.

Edge-connectivity
What if we instead consider the number of edges we need to remove to disconnect a graph?

Definition
A disconnecting set is a subset of edges $F \subseteq E$ such that $G-F$ has at least 2 components. separating \neq disconnecting
The edge-connectivity is the minimum size of a disconnecting set, and is noted $k^{\prime}(G)$. A graph is k-edge-connected if it has edgeconnectivity at least k.

Examples

$K(a)=1$

$$
K^{\prime}(a)=2
$$

$$
K(a)=K^{\prime}(a)=4
$$

Complete graphs have edge-connectivity $n-1$. You can prove it:
Let $S \subseteq V$ be a vertex subset of a connected graph G. Let $[S, \bar{S}]$ be the set of all edges with one endpoint in S and one in \bar{S}. Then $[S, \bar{s}]$ is an edge cut.

Edge cut $\vec{\Rightarrow}$ Disconnecting set

Not an edge cut \rightarrow

Connection to vertex-connectivity

Theorem (Whitney, 1932)
If G is simple, then $\kappa(G) \leq \kappa^{\prime}(G) \leq \delta(G)$. In words: vertex-connectivity is at most edge-connectivity, which is always at most the smallest degree.

Example of inequalities

$K(G)<K^{\prime}(G)=\delta(G)$

$$
k(G)=k^{\prime}(G)<\delta(G)
$$

$K(G)<K^{\prime}(G)<\delta(G)$

Proof
We first prove $\mathrm{K}^{\prime}(G) \leq \delta(G)$. Let v be a vertex with degree $\delta(G)$. The edge cut for the set $\{v\}$ has $\delta(G)$ edges, so an edge cut with $\delta(G)$ edges exist, and the minimum edge cut has size at most $\delta(G)$.

We also need to prove $k(G) \leq \kappa^{\prime}(G)$. To do so, we start with a minimum edge cut, and construct a vertex cut with at most the same size. If this process is always possible, that proves the desired inequality.

Consider a minimum edge cut $[S, V-S]$. There are two cases:

- If every vertex of S is connected to every vertex of $V-S$, then $\#[S, V-S]=|S||V-S| \geq|V|-1$. Also, by definition, $k(G) \leq|V|-1$.
So $k(G) \leq|V|-1 \leq \#[S, V-S]=K^{\prime}(G)$ (the last equality is because the minimum edge-cut is the minimum disconnecting set.
- otherwise, there is one vertex x in s and y not in s that are not adjacent. We construct a set of vertices T :
- All neighbors of x in $V-S$.
- All vertices of $S \backslash\{x\}$ that are adjacent to vertices in $V-S$.

Then, T is a vertex cut: There is no way to go from x to y without passing through one edge of T, so $G-T$ is disconnected. We need to show that T has at most \#[S, $V-S]$ vertices.
For each vertex t of T :

- If t is a neighbor of x, then $x t$ is in the edge cut.
- If t is in S, then t is adjacent to at least one vertex u in $v-s$. Then ut is in the edge

No edge is counted twice in this list, because x is not in T.
since every edge in this list is in the edge cut, then $|T| \leq \#[S, V-S]$, and $k(G) \leq \kappa^{\prime}(G)$.

Proposition

Let G be a connected graph. Then, an edge cut F is minimal if and only if G-F has exactly two components.

Remark
If we replace minimal by minimum, then the statement becomes false: G-F can have two components while there are edge cuts with size smaller than $|F|$.

With your study group, try to agree on an explanation of why this is true.

Edge connectivity for regular graphs

Theorem
If G is a 3 -regular graph, then $K(G)=K^{\prime}(G)$ 。
Proof
We already know that $k(G) \leq \kappa^{\prime}(G)$, in general. To prove the statement, we only need to show the reverse inequality (\geq), that is, from a minimum vertex cut, create an edge cut of the same size. Let S be a minimum vertex cut, and let H and J be two components of $G-S$. Since S is minimum, every vertex of it has a neighbor in H and a neighbor in J. Also a vertex cannot have at least two neighbors in both H and J since G is 3 -regular. For each vertex v in S, delete the edge from v to the component in which it has only one neighbor (if there is one neighbor in H, one in J and another one (in S for example), delete the edge to H).

That process breaks all the paths between H and J, so the deleted edges form an edge cut. Also, the size of that edge cut is ISI, which proves the statement.

