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For the complete graph, there is an easy way of answering: This is the total number
of trees with n vertices, as they are all subgraphs of the complete graph. Hence,
it is n  . 

However, the following question is much harder:

Question: Given any graph G (simple or not), how many spanning trees are subgraphs
of it?

Proposition
There are as many spanning trees in a graph G as in the graph obtained from G by
deleting all its loops.

Proof
Loops cannot belong to any tree, as they are cycles. So deleting them won't remove
any subtree.

Question: How many spanning trees does the complete graph with n vertices have? 

↤ ↦

4 trees passing through the outer cycle (of length 4).

However, we cannot use the same strategy for multiple edges, as there can be more
than one associated spanning tree. Here is an example:

Example: Count the number of spanning trees of the kite (K -e )

Finding a closed formula to count the number of spanning trees would be a lot to
ask for trees that don't have a specific structure. Instead, we see an algorithm
to answer this question easily.



24 trees passing through the diagonal, since we need to choose one edge from
each triangle.

So there are 8 spanning trees in the kite.

Example
In the kite, the contraction of the central edge gives the following:

In a graph G, the contraction of the  edge e=uv is the replacement of both
vertices u and v by a single vertex, by keeping all the edges incident to it, except
e. The resulting graph, G⋅e, has one fewer edge than G, and one fewer vertex.

↦

To count the number of trees, there are two cases. These two cases span all
the possibilities: either we use one specific edge or we don't use it. Of course,
we cannot be in both situations at the same time. Combinatorially speaking,
that means the total number of spanning trees is
    #(spanning trees using that edge) + #(spanning trees not using it).
If the latter seems easy to count in general, the former needs the introduction of
the following operation.

Proposition
The number of spanning trees of G, noted τ(G), satisfies, for any single edge
e, τ(G)=τ(G-e)+τ(G⋅e).

Proof
We already noted above that the total number of spanning trees is the sum of the
trees with and without edge e. The thing we need to prove is that τ(G⋅e) is the
number of spanning trees using edge e.
Start with T a spanning tree of G⋅e; T is connected to the new vertex created 
from the contraction of e. Replacing that vertex with the edge e
(and distributing the edges among the two vertices like in the G) gives a
spanning tree of G using e.
Also, from any spanning tree of G using e, we get a spanning tree of G⋅e by
contracting vertex G (i.e. the spanning graph is still connected and still has no
cycle).

This proposition will be the key to count, recursively, the number of spanning trees.
We could also benefit from some shortcuts, like the following proposition:
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That yields an algorithm to count the number of spanning trees in G:

- If G is disconnected, it has no spanning tree; if G has a single vertex,
it has only one spanning tree.
- Delete all loops in G.
- If G has no cycles of length at least 3:
  - The number of spanning trees is the product of the multiplicities of edges.
- Otherwise, choose a (multiple) edge e with multiplicity k, that is in a cycle of
length at least 3. The number of spanning trees is τ(G-e)+k τ(G⋅e).

Example
We count the spanning trees in the graph below:

As we did earlier with the kite, we consider deleting or contracting the central
edge.

In the last step, G-e has fewer cycles than G, and G⋅e has shorter cycles.
That means that the algorithm eventually terminates.

where G⋅e is the graph obtained by merging u and v and deleting {e,e,...,e}.

Proposition
If G has no loop and does not have cycles of length at least 3, its number of
spanning trees is the product of the multiplicities of the edges.

Proof
Since G has no loops nor cycles of length at least 3, all the cycles have length
2, i.e. they are multiple edges. At most one of them can appear in a given 
spanning tree. Also, at least one of them must appear: otherwise the graph 
would be disconnected. This is because these edges are all not part of a cycle 
that uses other edges. Hence, we have to pick exactly one edge per pair of
endpoint. These choices all being independent, we multiply their numbers.

Corollary
If there are k edges {e,e,...,e} between endpoints u and v in G, the number of
spanning trees of G is given by  

 τ(G-{e,e,...,e })+kτ(G⋅e),



4
Since it has multiplicity 1, the number of spanning trees can be counted in this way:

Deletion

Contraction 30 spanning trees using that edge.

Deletion  No cycle of length ≥ 3
There are 2x3x4=24 spanning trees not
using top and diagonal edges. 

# spanning trees of 

Contraction 2x We need to count the number of
spanning trees of the multigraph on 
the left, and multiply it by 2.

Deletion  

Contraction 2x

# spanning trees of 

Total number of spanning trees
30+1(24+2(12+2x7)) = 106 spanning trees

There are 3x4=12 spanning
trees not using the right edge.

For each edge on the right,
there are 7 edges in the
contracted graph.

That process works for small trees, but the recursive procedure makes it very long
to do for large connected graphs. We will see next class a theorem to make this
computation efficient.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 2.2


