Practice Midterm Questions

1. Let $B_{n, m}$ be the graph made of the complete graphs K_{n} and K_{m}, plus one edge to join them. How many spanning trees are there in $B_{n, m}$? Your answer should be given in terms of m and n, and you should prove your solution. Below is an example of $B_{4,5}$:

2. Prove that every simple graph with at least two vertices has two vertices of equal degree. Is the conclusion true for loopless graphs?
3. Prove or disprove: There exists a Hamiltonian graph with degree sequence ($4,3,2,2,1$).
4. Determine the maximum number of edges in a simple graph with n vertices and an independent set of size k. Prove your answer.
5. Consider the following description of the Petersen Graph: The vertices are indexed by the 2-element subsets of $\{1,2,3,4,5\}$, and two vertices are adjacent if their intersection, as subsets, is empty. The picture below describes this definition.

Now consider G_{k} with the following (similar) description: The vertices are the k element subsets of $\{1,2,3,4,5,6,7\}$, and two vertices are adjacent if their intersection (as subsets) is empty. Fill out the following table. This is a short answer problem. You don't have to justify every entry of the table. For the column about properties, write the letter corresponding to all the properties below that apply:
(a) Triangle-free and connected
(b) 4-regular
(c) Complete graph

k	\#vertices	\#edges	$\chi\left(G_{k}\right)$ min. \# of independent sets	Properties	Clique number largest size of clique
0					
1					
2			5		
3			3		
4					
5					
6					
7					

