
Math 38 - Graph Theory
Optimization and weighted graphs

Weighted graphs

Minimum spanning tree

Example
An internet provider wants to wire cable in a new housing development
and wants to reach every house. However, due to certain weather
conditions and due to the distance between houses, the cost of
reaching houses might not be the same from every path. The graph
below illustrates the potential cost of every section: that is the weight
of the edges, and the houses correspond to vertices.
How can they reach every house at minimum cost?

Problem: Given any weighted graph, find the spanning tree with the
minimum weight, where the weight of a tree is the sum of the weights
of its edges.

A weighted graph is a graph with edges labeled by numbers (called
weights). In general, we only consider nonnegative edge weights.
Sometimes, ∞ can also be allowed as a weight, which in optimization
problems generally means we must (or may not) use that edge.

We consider two problems, and use weighted graphs to solve them: The
first one is the problem of the minimal spanning tree (where minimal
refers to the weight on the edges), and the second one is the
shortest path.

Nadia Lafrenière
 04/25/2022

∞

To make sure they connect every house,
they must build a spanning tree. To find
the spanning tree with minimal cost, they
can use, for example, Kruskal's algorithm.
They have no incentive to create a cycle.

2Kruskal's algorithm: Given a connected weighted graph G=(V,E), find
its minimal spanning tree.

Idea: At every step, we have a forest H. We add edges from G to H
until H is a spanning tree. The subgraph always stay acyclic.
To ensure H is minimal, we consider edges to be added in increasing
order of their weight.

Example

has minimal spanning tree
of weight 9

Proof
We prove the following two things:
1) The result is always a spanning tree.
2) There can't be any spanning tree with smaller weight.

Stop (spanning
tree)

Theorem (Kruskal, 1956)
In a connected weighted graph, Kruskal's algorithm constructs a
minimum-weight spanning tree.

Initialization: H has |V| isolated vertices (no edge). The edges of G
are sorted in increasing oder of their weight.
Iteration: Consider the next smallest edge of G. If adding it to H
reduces the number of components of H, we do so. (Otherwise,
it creates a cycle, so we do not add it).
Stop: When we get at the end of the list of edges, or when H is a
spanning tree, whichever comes first.

31) We must show that the result is acyclic, connected and reaching
every vertex.
- It is acyclic, since we only add edges that reduce the number of
connected components. These edges cannot create cycles.
- Obviously, if we stop because the graph is a spanning tree, it is
connected and reaches every vertex. Otherwise, we stop because we
considered adding every edge; we did not add them only if they did
not reduce the number of components. So the number of components
in the forest is the same as in the original (connected) graph. Since
we started with all the vertices of G, a tree is always spanning.

2) We prove it by contradiction. Assume T is a spanning tree with
lower weight than H (obtained by the algorithm). They both have
the same number of edges (since they are spanning trees), so there
is at least one edge e in T but not in H. Conversely, there is an
edge e' of H that is not in T. Since T has lower weight than H, we
can choose e<e'. In fact, take the smallest such e. We considered e
before e' and did not add it to H. Necessarily, e would have created
a cycle in H, so there is a cycle in T (because e is the smallest edge
in T but not in H). A contradiction. So T=H, and H is the minimal
spanning tree.

Kruskal's algorithm is not the only algorithm that does so. See, for
example, Prim's algorithm, where you grow a tree from one single
vertex.

Shortest paths
Given two vertices in a labeled graph, what
is the shortest path?

Dijkstra's algorithm gives all the distances
from a given vertex u to other vertices
in the graph.

4
Observation: This cannot be done using a greedy algorithm.

Example
Shortest path from u to e

Theorem
Dijkstra's algorithm computes the distance d(u,x) for every vertex x
in a connected graph.

greedy = informed by
 local data

Initialization: The set of visited vertices is {u}, d(u,u)=0, the tentative
distance from u to x, t(x), is the weight of the edge between u
and x (∞ if it does not exist).
Iteration: Take the vertex x with shortest value of t(x) amongst the
non-visited vertices. The distance to u is d(u,x)=t(x).
"Visit it" by modifying t(y) for all its neighbors, by the minimum of
these:
- what t(y) was already; the tentative distance does not change
- d(u,x) + the weight of the edge xy; there is a shorter path

Stop when you visited every vertex (for a connected graph).

Dijkstra's algorithm
We need a weighted graph, and we compute the minimum-weight path
from one specific vertex u to every other vertices. An edge that
does not exist is equivalent to an edge with weight ∞.
Idea: The distance d(u,v) is the weight of the edge between u and v
if they are adjacent. We give tentative distance d(u,w) for every
vertex w not adjacent to u, and that distance never increases during
the process.

With a greedy algorithm: d(u,e)=16? A (much) shorter path: d(u,e)≤ 8

5
Sketch of proof
- Previously visited vertices cannot see their distance increase.
- When a vertex is visited, there cannot be a shorter path passing
through a non-visited vertex.

Example

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 2.3

