
Math 38 - Graph Theory
Basic definitions and some problems
Can you draw these pictures, without ever crossing your path?

Can you draw this picture without ever lifting your pencil?

These are children problems, but also real-life problems in graph
theory, namely to know whether a graph is planar, or similar to 
know if a graph is Eulerian.

The first problem: Seven bridges of Königsberg (Euler, 1736)

Euler was wondering if one can go
from one place in the Königsberg
area, and back to that original 
place, by taking every bridge
exactly once.

(This is considered to be the first
solved problem in graph theory).

A modelisation of the problem:

This graph model the
areas of the city. There
is no need to know the 
exact location of each
bridge.

Remarks:
- Since we have to go back where we started, we do not care where
we start.
- Everytime we go from a location to another and back, we cross 2
bridges adjacent to that location.
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Since every island has an odd number of bridges, it is not possible
to visit all the islands by taking every bridge exactly once.
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Some definitions

Example

  Not simple graphs Simple graph

When uv (or equivalently) vu is an edge, we say the vertices u and
v are adjacent, or that they are neighbors.

Multiple edges are edges having the same pair of endpoints.
A simple graph is a graph having no loop nor multiple edges.

Subgraphs and containment

A graph G is made of a set of vertices (modeling some objects), and
a set of relations between two vertices, called the edges. We denote
G = (V,E) for the graph with vertices V and edges E. Any edge is a 
pair of two vertices called the endpoints.

We draw a graph (on paper or on the computer) by representing the
vertices as points, and we draw a curve between two vertices if they
are endpoints of the same edge. We can draw differently the same 
graph.

A loop is an edge whose endpoints are the same vertex.

A graph G'=(V',E') is a subgraph of G=(V,E) if V'⊆ V and E'⊆E.
We then say that G' is contained in G, denoted G'⊆G.



Some important problems in graph theory
1. Acquaintances
Do every set of six people contain at least three mutual acquaintances
or three mutual strangers?

Two graphs. The first one is a
5-vertex graph with no three mutual
strangers, nor three acquaintances.
The second one has six vertices, and
contain both three mutual strangers
and three acquaintances (a clique).

As a homework, you will have
to prove your solution to this
statement.

A clique
An independent set

Definition
A bipartite graph is the disjoint union of two independent sets.

A graph is connected if, for every pair of vertices, there is a path
(i.e. a sequence of edges) between them that belongs to the graph.
It is otherwise disconnected.

That question can be represented using a graph. Every person is a
vertex, and there is an edge between two persons if they know
each other. Here, we assume knowing each other is a mutual relation,
i.e. knowing a celebrity usually does not count.

Some useful vocabulary:
A clique in a graph is a set of pairwise adjacent vertices, i.e. a
complete subgraph.
An independent set is a subset of vertices with no adjacent pairs.

Example
Every graph with n vertices is a subgraph of the complete graph with
m≥n vertices.

2. Job assignments
If there are m jobs and n people, not all qualified for all the jobs, 
is there a way we can fill all the jobs?
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people
jobs

The edges are between a job and
a qualified person for that job.

(The jobs cannot all be filled in this example).

Vertices: Subjects
Edges: If someone takes both subjects,
i.e. eventual scheduling conflicts. 

Schedule:
1. History-English-PE
2. Chemistry
3. Math

Reference: Douglas B. West. Introduction to graph theory, 2nd
edition, 2001. Sections 1.1.1 and 1.1.2.
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3. Scheduling and avoiding conflicts
My high school used to have a very long exam sessions at the end of
the year, and there were still some conflicts. I wish the administrators
knew graph theory…

A coloring of a graph is a partition of
a set into independent sets. Scheduling
with no conflicts is equivalent to coloring.
If we want to use the minimum time, we 
should use as few colors as possible.

Chemistry
Math

English History

Physical
 Education



Math 38 - Graph Theory
Matrices for graph and Isomorphisms

We saw last class that two graphs are the same if they are differently,
as long as we are simply "moving the vertices". The goal of today's
lecture is to make this statement more formal. One tool we will use is
adjacency and incidence matrices. We will as well start classifying the
graphs. 

A(G) =




0 1 1 0
1 0 2 0
1 2 0 1
0 0 1 0


 M(G) =




1 1 0 0 0
1 0 1 1 0
0 1 1 1 1
0 0 0 0 1




Isomorphisms
So when are two graphs the same? We will answer this question using
the notion of a bijection. As a reminder, this an injective and 
surjective function, or a one-to-one correspondence.

The degree of a vertex (in a loopless graph) is the number of
edges incident to that vertex.

The graph on the left has the following adjacency and incidence
matrices:

The adjacency matrix is always a symmetric matrix.
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An isomorphism from a simple graph G to a simple graph H is a 
bijection f:V(G)→V(H) such that every edge uv of G is mapped
to the edge f(u)f(v) of H. We then say G and H are isomorphic,
denoted G ≅ H.

Let G=(V, E) be a graph without any loop (it does not have to be a
simple graph). We number the vertices from 1 to n and the edges
from 1 to m.

The adjacency matrix of G, written A(G), is the matrix whose (i,j)-
entry is the number of edges with endpoints the vertices i and j.
The incidence matrix of G, written M(G), is the n-by-m matrix whose
(i,j)-entry is 1 if vertex i is an endpoint of edge j, and otherwise 0.

Matrices: adjacency matrix and incidence matrix
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Example
The following graphs are isomorphic:

This is easily seen with the bijection that exchanges 1 and 3.

Example
The following graphs are not isomorphic. They both have six vertices,
all of degree 3, and nine edges, and they are both connected, but 
one is bipartite and the other is not. Since they don't have the same
properties, they are not isomorphic.

Example
All the isomorphism classes for graphs with 4 vertices are

Special graphs
There are some graphs that have special names, and that turns out to
be handy for whenever we want to use them or to classify them.

This is equivalent to asking that there exists a simultaneous
permutation of the rows and columns of the adjacency matrix of G 
that would yield the adjacency matrix of H.

No triangle appear in the first graph.

Remarks:
- Finding a bijection of the labels is the way to prove two graphs
are isomorphic. However, to prove they are not isomorphic, there are
many ways. For example, if the list of degrees is not the same, you
will never be able to find an isomorphism. Or if the number of edges
(or edges) do not correspond. Among others.
- The isomorphism relation is an equivalence relation, i.e. this is a
symmetric relation (G≅H iff H≅G), a transitive relation (G≅H and H≅J
imply G≅J) and a reflexive one (G≅G). That means that we can split
the graph into equivalence classes.



Complete graphs: Graphs with n vertices and   edges.

Complete bipartite graphs: Bipartite graphs with independent sets of
size s and r, with sr edges.

Paths: Connected graphs, with all the vertices of degree 2, except 
at most two who have degree 1.

Cycles: Paths with as many edges as vertices.

Example: C  is self-complementary.
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Note: K   is often called the claw.

The complement of the graph G is the graph that has the same
vertices and whose edges are all the edges that do not belong to G:

Example:

Example:

Example:

Example:

≅

A graph G is self-complementary if its complement G is isomorphic
to G.

Example: The cube decomposed into copies of K

A decomposition of a graph is a list of subgraphs in which every
edge appears exactly once.

Proposition
A graph G is self-complementary if and only if the complete graph
is a decomposition into two copies of G.
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The Petersen graph

The Petersen graph is a 10-vertices graph with 15 edges that is very
famous, as it is an example or a counter-example to many phenomena.

The Petersen graph is the graph of 2-element subsets of {1,2,3,4,5},
and there is an edge between 2 subsets if their intersection is empty.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 1.1

Some properties of the Petersen graph:
- Two non-adjacent vertices share exactly one 
neighbor.
- The graph has no triangle, but is not bipartite.
- The shortest cycle in the Petersen graph has length 5.
(The length of the shortest cycle in a graph is called
the girth of the graph.)



Math 38 - Graph Theory
Connection in graphs

Today's lecture aims to define the proper vocabulary to talk about 
trajectories and connectedness in graphs.
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Definitions

Example

Recall that a path is a graph whose vertices can be ordered without 
repetition (except maybe for the endpoints) in a sequence such that
two consecutive vertices are adjacent. A path is a u,v-path if it starts
at vertex u and ends at vertex v.

A walk is a list (v,e,v,…,e,v) of vertices and edges such that the edge
e has endpoints v  and v. A walk is a u,v-walk if its endpoints
(the first and last vertices of the walk) are u and v. If there is no
multiple edges, we can write the walk as (v,v,…,v).

A trail is a walk with no repeated edge. Similarly, a u,v-trail has 
endpoints u and v.

The points that are not endpoints are internal vertices.

The length of a walk, trail, path or cycle is its number of edges.
A walk or a trail is closed if its endpoints are the same.

(a,x,a,b,x,u,y,x,a) specifies a closed walk,
but not a trail (ax is used more than
once).

(a,b,x,u,y,x,a) specifies a closed trail.

The graph contains the five cycles (a,b,x,a), (u,y,x,u), (v,y,x,v),
(x,u,y,v,x) and (y,c,d,y).

The trail (x,u,y,c,d,y,v,x) is not an example of a cycle, since vertex
y is repeated (so it is not a path).



2Lemma
Every u,v-walk contains a u,v-path.

Proof
The proof can be done using the principle of strong induction, and 
we induce on the number of edges.

Base case: No edge, u=v is the only vertex in the graph. Only walk 
has length 0, and is therefore a path.

Induction hypothesis: Assume that, for a walk with k<n edges, there is 
always a path with the same endpoints.

Example: The u,v-walk from previous page.

Induction step: The walk has n edges. There are two cases: either
there is no repeated vertex or only the endpoint is repeated, and
then the walk is already a path, or there is a repeated vertex x.
In the latter case, we delete the edges between the first and last
occurrences of x, which leaves us with only one copy of x, and a 
u,v-walk with fewer than n edges. We can thus use the induction
hypothesis to conclude that there exists a u,v-path in the u,v-walk.

In the walk (a,x,a,b,x,u,y,x,a), we delete
what happens between the first two
occurrences of a, and get the closed walk
(a,b,x,u,y,x,a). Then we delete what happens
between the two occurrences of x, and get
the cycle (a,b,x,a), which is a path.

Connectedness, components and cuts

Recall that a graph is connected if and only if there exists a path 
between u and v for every pair of vertices {u,v}. 

A component of a graph G is a maximal connected subgraph.
A component is trivial if it has no edges; in this case, the unique
vertex is said to be an isolated vertex.



3Example
The following graph has 4 components, each of which are circled in
orange.

An isolated vertex

Proposition
Every graph with n vertices and k edges has at least n-k components.

Induction hypothesis: Assume that a graph with k-1 edges and n vertices
has at least n-k+1 components. 

Proof
The proof can be done by induction on k. The case of k>n is obvious,
since the number of components is always nonnegative.

Base case: If k=o, then each of the n vertices are isolated, and there
are n components.

Induction step: Let G=(V,E) with |V|=n and |E|=k. Remove the edge e
to get G-e. The component of G containing e can either be split into
two components by removing e, or stay a component. So G has either
the same number of components as G-e, or one fewer. By induction
hypothesis, G-e has at least n-k+1 components, so G has at least n-k.

In the last proof, we had to distinguish the cases where removing the
edge was creating a new component or not. An edge whose deletion
creates new component has a special name:

A cut-edge or cut-vertex of a graph is an edge or vertex whose
deletion increases the number of components. We write G-e or G-M
for the subgraph of G obtained by deleting an edge e or a set of
edges M; we write G-v and G-S for the graph obtained by deleting a
vertex v or a set of vertices S along with their incident edges.
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A subgraph obtained by deleting a subset of vertices and their incident
edges is an induced subgraph: we denote it G[T] if T=V\S and we
deleted the vertices in S.
Example

Vertices 3 and 5 are cut-vertices, and the edge
g is the only cut-edge.
The induced subgraph for the vertices 1, 2, 
3, 4 and 6:

Theorem
An edge is a cut-edge if and only it if belongs to no cycle.

Proof
Let e=uv be an edge in the graph G, and let H be the component
containing e. We can restrict the proof to H, since deleting e does not
influence the other components. We want to prove that H-e is
connected if and only if e is in a cycle in H.

If H-e is connected, then there exists in it a path P between u and v.
Hence, adding edge e=uv creates the cycle P+e.

If e is in a cycle c, c-e is a path P between v and u avoiding the
edge e. To show that H-e is still connected, we need to show that,
for every pair of vertices {x,y}, there is a path between x and y. Since
H is connected, there exists in H such a path. If that path does not
contain e, it is still in H-e. Otherwise, replace e by P, and remove an
edge from that path everytime it appears twice consecutively. 

The last theorem allows us to characterize cut-edges. Would such a
theorem be possible for cut-vertices? The following example proves that
asking for it to be outside a cycle is not a requirement for a cut-
vertex, since vertex 3 is a cut-vertex, and belongs to two cycles:
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Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 1.2

Removing vertex 3:

Two connected
components



Math 38 - Graph Theory
Bipartite and Eulerian Graphs

Characterization of bipartite graphs
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Today's lecture aims to give the important properties of bipartite
graphs. We will also define Eulerian circuits and Eulerian graphs: this
will be a generalization of the Königsberg bridges problem. 

The goal of this part is to give an easy test to determine if a graph
is bipartite using the notion of cycles: König theorem says that a graph
is bipartite if and only if it has no odd cycle.

Lemma
Every closed walk of odd length contains an odd cycle. This is called 
an odd closed walk.

Proof
We prove it using strong induction on the length of the walk (i.e.
the number of edges).
Base case: length 1. The walk is a loop, which is an odd cycle.
Induction hypothesis: If a walk has odd length at most n, then it
contains an odd cycle.
Induction step: Consider a closed walk of odd length n+1. If it has
no repeated vertex (except the first and last one), this is a cycle
of odd length. Otherwise, assume vertex v is repeated. We can split
the walk into two closed walks starting and ending at v, one of
even length, and one of odd length smaller than n. By induction
hypothesis, the latter contains an odd cycle.
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That lemma will be helpful for characterizing bipartite graphs. Of 
course, bipartite graphs can have even cycles, which starts in one
independent set and ends there.

We can represent the independent
sets using colors.

Theorem (König, 1936)
A graph is bipartite if and only if it has no odd cycle.

not possible

Proof
Notice that a graph is bipartite if and only if all its components are
bipartite. So we do the proof on the components.
 ⇒ We prove the contrapositive: it is has an odd cycle, it is not
bipartite.
Since every cycle must end at the vertex where it starts,
it starts and ends in the same independent set. Since every
edge is going from one set to the other, we alternate
between the two sets. At the end of the cycle, we cannot
close it, since we would need to change the set of the
first vertex. Hence, if a connected graph is bipartite, it has
no odd cycle.

⇐ We still need to prove that a connected graph without odd cycle is
bipartite. If the graph has only one vertex, it is bipartite.
Otherwise, start at vertex u, and color its neighbors with color blue.
Then, color the neighbors of the blue vertices in red, and repeat this
process by coloring the neighbors of the red vertices in blue, until
all vertices have been colored. I claim that no vertex will change color
in that process; assume otherwise, that v is changing color. That would
mean that there exists a path of odd length from u to v (the one
that colors v in blue), and a path of even length doing it (the one
that colors v in red). The combination of these two paths is an odd
walk, and contains an odd cycle, which is prohibited by the hypothesis.
Hence, the coloring is well defined, and the two colors represent
independent sets. The graph is bipartite.
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odd cycle even cycle

⇐ We need to prove that a connected graph with only vertices of even
degrees is Eulerian. We can ignore the isolated vertices for this since
we are focusing on the edges. The following lemma is useful:

If a graph has a vertex of odd degree, we are in the case of the
Königsberg bridges: we can leave the vertex more often than we can
come back (or vice-versa), and thus our trail cannot be closed.

neither blue
nor red

Technique for checking whenever a graph is bipartite:
- If it is bipartite, prove it by finding two independent sets.
- If it is not bipartite, find an odd cycle.

Eulerian circuits

The graph in the Königsberg bridges problem is not Eulerian. We saw
that the fact that some vertices had odd degree was a problem, since
we could never return to that vertex after leaving it for the last time.

A graph is Eulerian if it has a closed trail containing all the edges.

If a graph has at least two non-trivial components, there can't be
a walk going through all the edges, since they are in separate
components.

Theorem
A graph is Eulerian if and only if it has at most one nontrivial
component (i.e. component with edges), and if every vertex has even
degree.

Proof
We first prove ⇒ by proving the contrapositive: if a graph has more than
one non-trivial component, or it there is a vertex of odd degree,
then the graph is not Eulerian.
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Lemma
If every vertex of a graph has degree at least 2, then it
contains a cycle.
Proof
Let P be a maximal path in that graph. If it is a cycle,
we are done. Otherwise, let u be an endpoint of P.
Since it has degree at least 2, u has a neighbor v not
in P. But since P is maximal, that means that v is already
in P, and the edge uv completes the cycle.

Proposition
Every graph with only vertices of even degree decomposes into cycles.

Eulerian circuits are closed trails that pass through all edges. A 
similar property is being Hamiltonian: a Hamiltonian circuit is a circuit
that passes though all vertices exactly once. A Hamiltonian graph is
a graph with a Hamiltonian circuit.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 1.2

Proof of the theorem (continued)
We proceed by induction on the number of edges.
Base case: 0 edge, the graph is Eulerian.
Induction hypothesis: A graph with at most n edges is Eulerian.
Induction step: If all vertices have degree 2, the graph is a cycle
(by definition) and it is Eulerian. Otherwise, let G' be the graph
obtained by deleting a cycle. The lemma we just proved shows it is
always possible to delete a cycle. By induction hypothesis, G' is
Eulerian. To build an Eulerian circuit in G, start by the cycle we just
deleted, and append the Eulerian circuit of G'.



Math 38 - Graph Theory
Vertex Degrees and counting
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Today, we are doing a bit of combinatorics and will deduce some
properties on the degrees, number of edges and number of vertices. 

We already defined the degree of a vertex in a loopless graph to be
the number of edges incident to it.
For a general graph, define the degree d (v) of the vertex v to be
the number of edges incident to it, with each loop counted twice.

The order of a graph G=(V,E) is |V|, as the size of G is |E|.

Example
- K  is a regular graph. Each vertex has degree n-1.
- K   is regular if and only if m=n. Then, the degree is always n.
- A connected regular graph that has the same order and size is a
cycle.
- Hypercubes are regular graphs.

Counting and bijections

The maximum degree of a vertex is denoted Δ(G) and the minumum
degree is denoted δ(G).
A graph is said to be regular if δ(G)=Δ(G). 

Corollary
In any graph G=(V,E), the average degree is 2|E|/|V|, and
δ(G) ≤ 2|E|/|V| ≤ Δ(G).  

Proof
For each edge, there are two endpoints (maybe equal). If the
endpoints are different, this edge contributes for 1 in the degree
of two different vertices. If the edge is a loop, it adds 2 to the
degree of the vertex it is incident to. So either way, every edge
accounts for 2 in the total degree count.

v∊V
G

G

Proposition (degree-sum formula)
If G=(V,E) is a graph, then ∑ d (v) = 2|E| .



2Corollary
Every graph has an even number of vertices of odd degree.

Corollary
A k-regular graph (i.e. a regular graph in which the degree of each
vertex is k) has k|V|/2 edges.

Example: Hypercubes
The n-dimensional hypercube H  is defined recursively as:
• H  is the simple graph with one vertex
• H   is obtained by creating two copies of H  and appending an edge
 between corresponding vertices in the two copies.

Proposition
H  is regular, as each vertex has degree n. 

Proposition
If k>0, then a k-regular bipartite graph has the same number of 
vertices in its two independent sets.

Either not bipartite or not
regular.

Proof
The proof can be done by regular induction.
The base case is H , and it has no edge.
Induction hypothesis: The n-dimensional hypercube H  is n-regular.
Induction step: The (n+1)-dimensional hypercube is made of two
copies of H , and we add an edge between every pair of similar
vertices in the two copies. This way, we add exactly one to the
degree of each vertex from H , and that degree is, by induction
hypothesis n.

n

n

n

n
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Vertex-deletion and reconstruction conjecture
Is it possible to reconstruct a graph if you have only a list of its
subgraphs? There is a long-standing, and still open conjecture saying
it is, and so far we know it is almost always possible (that being
understood in a probabilistic sense).

Example

has vertex-deleted subgraphs

For a graph G, a vertex-deleted subgraph is an induced subgraph G-v
obtained by deleting a single vertex v.

Proof
Since the graph is regular, all vertices have degree k. If there are
m edges in total, the sum of the degrees for all the vertices in one
independent set is m, as every edge has exactly one endpoint in that
set. Since the graph is k-regular, there are m/k vertices in each set,
so the order of both sets is the same. 

Proposition
For a simple graph G=(V,E) of order n>2 and size m,

where #E(G-v) is the number of edges in the graph G-v.

Proof
We start with the summation, and we will prove the summation is equal
to m(n-2):

GG v∊Vv∊V v∊V
∑#E(G-v)= ∑ |E|-d (v) = ∑ |E| - ∑ d (v) = mn-2m
v∊V

Conjecture (Reconstruction Conjecture - Kelly, Ulam, 1942)
If G is a simple graph with at least three vertices, then G is uniquely
determined by the list of its vertex-deleted subgraphs (up to
isomorphism).

 4 x

 1 x



4Note that the hypothesis that G has at least three vertices is
important. Otherwise, we would find a counterexample with two vertices,
since both simple graphs with two vertices have the same set of 
vertex-deleted subgraphs.

Example
has vertex-deleted subgraphs

To reconstruct the graph, we know that 4 vertices have degree
#E(G)-4 and 1 has degree #E(G)-2. Using the proposition, the
number of edges in G is (2+4x4)/3=6. So the list of degrees is
(2,2,2,2,4), and the graph is connected.
That means that the vertices are in two cycles. The length of the
cycles can be found by looking at the subgraphs: there is at least one
cycle of length 3. Since the graph is simple, both cycles have length
3 and the graph has to be isomorphic to the bowtie.

Even though the conjecture is not proven, there are a number of cases
that are known. Also, we can know some properties from the list of
subgraphs; for example if the graph is connected.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 1.3

 4 x

 1 x



Math 38 - Graph Theory
Extremal problems

Extremal problems consider the minimum and maximum numbers some
statistics on a class of graphs can reach. We introduce some of the 
types of proofs useful in graph theory: Algorithmic, and by
construction. 

First example
In any simple graph (V,E), the maximum number of edges is 

Nadia Lafrenière
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Example
In a bipartite graph with independent sets of size k and m, there
can be at most km edges.

Edges in connected graph
Proposition
The minimum number of edges in a connected graph with n vertices is
n-1.

Proof
We need to prove two things:
- If a graph with n vertices has fewer than n-1 edges, it is not
connected.
- There exists a connected graph with n vertices and n-1 edges.

This is an extremal problem, since we are looking at the maximum
number of edges. The class of graphs here is all simple graphs.

Proof
In a simple graph, there can be at most one edge per pair of 
distinct vertices. The maximum number of edges appear in K

Independent sets of size 2 and 4,
8 edges at maximum. km is the number
of edges of K  .
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Remark (on the proof technique)
When giving the solution to an extremal problem, there are two parts
to be proven:
- That the value we give is minimal (or maximal), i.e. that you cannot
give a lower (respectively, higher) value.
- That this value can be realized on at least one graph of the class we
consider.

Recall from last week (Friday), that a graph with n vertices and
m edges has at least n-m components. Hence, if m<n-1, the graph
has at least 2 components and is not connected.
Also, the path with n vertices has n-1 edges and is connected, proving
that the minimum is realized.

Proposition
Let G be a simple graph with n vertices. If the minimum degree is 
δ(G)≥ (n-1)/2, G is connected.

Proof
The minimum degree of the graph means that every vertex should have
at least this number of neighbors, in a simple graph.
To prove that G is connected, we must show that there is a path 
between any pair of vertices {u,v}. We will in fact prove that there
exists a path of length at most 2.
- If {u,v} are adjacent, they are obviously in the same component.
- Otherwise, they share at least one neighbor w: There are n-2 other
vertices, and the sum of their degree is d(u)+d(v)≥n-1. Hence,
u-w-v is a path connecting them.

A bound is said to be sharp if improving it (reducing a lower bound or
increasing an upper bound) would make the statement wrong.

11 vertices
Minimum degree is 4, just under
5 = (11-1)/2.
Graph is disconnected.

The bound in the last problem is sharp. To prove it, we give an example
of a graph with n vertices and minimum degree   -1 that is not
connected: This graph is the disjoint union of K   and K  .

K , degree 4 K , degree 5



3Bipartite subgraph

Theorem
Every loopless graph G=(V,E) has a bipartite subgraph with at least |E|/2
edges.

Here we prove that, given a graph G, we can always find a bipartite
subgraph with at least a fixed number of edges. We give an 
algorithmic proof to construct the graph, but a proof can also be done
by induction.

Proof (algorithmic)
We start with any partition of the vertices into two sets X and Y.
Let H be the subgraph containing all the vertices, but only the edges
with one endpoint in X and one in Y.

6 edges, instead of 10

End

As long as H does not have at least half the edges of G at every
vertex, there are vertices that can be swapped from X to Y or Y to X;
repeat this process. When it terminates, the number of edges 
in H is always at least half the number of edges of G.

Triangle-free graphs
A graph is said to be triangle-free if it has no three
vertices that are all adjacent. In general, a graph G is
H-free if it does not contain H as a subgraph.

The Petersen graph is triangle-free (but not bipartite).
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↦

↦

= less than half the edges

↦ ↦

Let v be a vertex in X. If H has fewer than half the edges incident to
v, then it means that v has (in G) more neighbors in X than in Y. To
increase the number of edges in H, switch v to Y. The number of
edges just increased.
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Theorem (Mantel, 1907)
The maximum number of edges in a simple triangle-free graph with n
vertices is   .

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 1.3

We can split 7 vertices into two sets 
of 3 and 4 vertices, which leads to 
12 edges:, which is the smallest integer
below 49/4.

For the second part, we must prove that a triangle-free graph has
edges. This is the case of K    .

Proof
For the proof, we again need to prove two things:
-that a triangle-free graph with n vertices cannot have more than
edges.
- that there exists, for any n, a graph with n vertices and    edges
that has no triangle.

For the first part, assume the graph is triangle-free. Take a vertex v
of maximal degree ∆. Its ∆ neighbors cannot have edges among them.
So every edge of G must have at least one endpoint in a 
non-neighbor of v, or in v itself. There are n-Δ such
vertices. Each such vertex has degree as most Δ.
Therefore, we give an upper bound on the number of edges:
the number of edges is at most ∆(n-∆) (because n-∆  is the number
of vertices not adjacent to v). Maximizing ∆(n-∆) gives ∆=n/2.
Hence, the number of edges is at most   .



Math 38 - Graph Theory
Graphic sequences

We look at the list of degrees to get some information on the graph.
We also look at what list of nonnegative integers can be the degree
sequence of some graph.

d1 ≥ d2 ≥ . . . ≥ dn ≥ 0

Let G be a graph with vertices v, v, …, v. The degree sequence
of G is the list d(v), d(v),…, d(v). Usually, we write this sequence
in decreasing order (and reorder the labels accordingly):

Proposition
The nonnegative integers d, d, …, d are the degree sequence of
some graph if and only if their sum is even. 

Nadia Lafrenière
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Proof
We need to prove that the condition is both necessary and sufficient.

=> (the condition is necessary) We already showed (last week) that
the sum of the degrees in a graph is always even.
<= (the condition is sufficient) This part of the proof is done by
constructing a graph with a given degree sequence.
First, we consider all the vertices with odd degree (there is an even
number of them). We pair them by drawing exactly one edge at each
of these odd vertices. After this step, the number of endpoints to
be added to every vertex is even, so we can add half this number
of loops, making it a degree sequence.

Example
(5,3,2,1,1) can be realized on a (non-simple) graph in this way:

Of course, this technique does not work for simple graphs, because of
the loops. Moreover, 5 cannot be the degree of a vertex in a simple
graph with 5 vertices.



2A graphic sequence is a list of nonnegative integers that is the 
degree sequence of some simple graph. A simple graph with degree
sequence d realizes d.

Characterization of graphic sequences
We already noticed the two obvious conditions for a nonnegative
integers sequence to be graphic, i.e. the sum of degrees must be
even and the maximal number cannot be greater than n-1. However,
this is not enough, as shown with the degree sequence (2,0,0), which 
must necessarily involve a loop.

Theorem (Havel 1955, Hakimi 1962)
The only one-element graphic sequence is (0).
For n>1, an integer list d of length n is graphic if and only if d' is
graphic, where d' is obtained by deleting its largest element (Δ) and 1
from the Δ next largest degrees.

Example
The graph below has degree sequence d=(3,2,2,2,1).
It is obvisouly graphic by the picture. Here, Δ=3, and we obtain d'
as (1,1,1,1). Notice that it is not the degree we obtain by deleting the
highest-degree vertex (shown on the right), which would be
(2,1,1,0). And (1,1,1,1) is also realizable, as shown below.

(2,1,1,0)(3,2,2,2,1) (1,1,1,1)

Proof (of theorem)
The case where there is only one vertex is obvious.
We need to prove that this condition is necessary and sufficient when 
n>1.
<= (sufficient) If d' is realizable, there exists a graph G' with vertices
having d' as degrees. I want to add a vertex that has degree Δ 

greater than the largest degree of G'. To do so, I add the vertex
and connect it to the Δ vertices with larger degrees in G', realizing d.



3
d' = (2,1,1,0)
d = (3,3,2,2,0)

Example

The case of loopless graphs
Multigraphs (even loopless) have a much easier characterization for 
degree sequences, as given by this theorem of Hakimi.

Theorem (Hakimi, 1962)
A sequence of decreasing nonnegative integers d,d,…,d is the degree
sequence of a loopless graph if and only if its sum is even and

d1 ≤ d2 + . . .+ dn

=> (necessary) There are two cases to consider. 1) The vertex v of
degree Δ has neighbors that have the Δ next highest degree. Deleting
v and its incident edges yield a graph with degree sequence d'.
2) Consider the neighborhood of v (the vertex of higher degree)
and call it N. Let S be the set of the Δ vertices having the highest 
degrees (except for v). Case 1) is when N=S, so here they are distinct.
We will transform G to get N=S.
Take a vertex u in N\S, so u is adjacent to v, but has a low degree,
and take w in S\N (not adjacent to v, but high degree).
Since w has higher degree than u in G\{v}, w has at least one neighbor
x that is not adjacent to u.

By switching the edges uv and xw to vw and ux (from the blue to the
red in the picture), we increase |N⋂S|. We repeat this process as long
as N≠S. When N=S, we use the first case.

No edge in the
original graph.

(3,2,2,2,1)
(3,2,2,2,1) (1,1,1,1)

↦ ↦ ↦
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Proof is left as homework for next week's set.
Hint: You can proceed by construction, but it might be easier to do 
induction (not necessarily on the number of vertices).

Graphs with same graphic sequence

In the last proof, we exchanged the endpoints of some edges to get
a new graph with the same graphic sequence.

A 2-switch is the replacement of a pair of edges {uv, wx} by
{ux, vw}, provided ux and vw did not already exist in the graph.

Remark
A 2-switch always preserves the degree of each vertex. 

Example

↦

2-switch

Both graphs have degree sequence (2,2,2,2,2,2).

The proof is omitted, but can be found on page 47 of the textbook.
The condition is clearly sufficient, as the 2-switches preserve the 
degree of each vertex.

Theorem (Berge 1973)
Two simple graphs G and H have the same graphic sequence if and
only if there is a sequence of 2-switches from G to H.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 1.3



Math 38 - Graph Theory
Directed graphs

A directed graph or digraph is made of two sets: the vertices, and a
set of edges defined as ordered pairs of two vertices: a tail and a
head. For one edge, the tail and the head are both endpoints, and
we say the edge is from its tail to its head. We sometimes use the
word arrow for the edges of a directed graph.

We introduce directed graphs and their terminology. Applications include
Markov chains, automata and De Bruijn graphs.

Nadia Lafrenière
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Edge from u to v

Some examples

Car traffic around
the Green

Trail etiquette

Preposition

Determinant

Punctuation

Conjuction

Noun

Verb

Parts of speech in
the sentence: "While
at the beach, the
dog eats the biscuits
in the box."

Not a multiple edge

Like in undirected graphs, a loop is an edge with its two endpoints
being equal. Multiple edges are edges having the same tail and the 
same head.

A directed graph is simple if there is no loop nor multiple edges.

Example: All the directed graphs above are simple.
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In a simple digraph, we write the edge from u to v as uv (and so 
this is not the same as vu). If uv is in the graph, v is a successor of
u and u is a predecessor of v.

The underlying graph of a digraph D is the undirected graph G in which
we removed the orientation of the edges. Hence, uv=vu, and if uv and
vu both appear in D, uv is a multiple edge of G.
Remark: The underlying graph of a simple digraph is not always a simple
graph.

simple multiple edges

Adjacency and incidence matrix

A(D) =




0 0 1 0
1 0 1 0
0 1 0 0
0 0 1 0


 M(G) =




−1 +1 0 0 0
+1 0 +1 −1 0
0 −1 −1 +1 −1
0 0 0 0 +1




A simple digraph is a path if its vertices can be ordered so that v
follows u in the vertex ordering if and only if there is an edge from
u to v. The only vertex that can be repeated is the first and the last
vertices, if they are equal; the path is then a cycle.
Equivalently, we can define walks and trails (walks without repeated
edges) in the same way as in undirected graphs.

In a digraph, the adjacency and incidence matrices are not defined in
the same way as in graphs.

The adjacency matrix A(D) of a loopless digraph D has u,v-entry the
number of edges from u to v. The incidence matrix has v,e-entry +1
if v is tail of e, -1 if it is its head, and 0 if v is not an endpoint.

↦

Subgraphs and isomorphisms are defined in the same way as for
undirected graphs.

The digraph on the left has the following adjacency and incidence
matrices:

The adjacency
matrix is no
more symmetric!



3Connectedness: weak and strong
A digraph is weakly connected if its underlying graph is connected.
It is strongly connected if there is a path from u to v, for every
two vertices u and v.

The strong components of a digraph are its maximal strongly connected
subgraphs.

Degree and neighborhood, in and out

Eulerian graphs

The graph below is weakly connected, but not strongly connected, as
there is no path from vertex 3 to vertex 4.

A digraph is Eulerian if it contains an Eulerian circuit, i.e. a trail 
that begins and ends in the same vertex and that walks through every
edge exactly once.

Theorem
A digraph is Eulerian if and only if it there is at most one nontrivial
strong component and, for every vertex v, d⁺(v)=d⁻(v).

Obviously, a graph will not be Eulerian if it has more than one nontrivial
component or if the sum of the in and out degree of some vertex is
odd. The following theorem gives a classification of Eulerian digraphs.

Proof
(⇒) If there is an Eulerian circuit, it visits all the vertices in a
nontrivial component, so there is at most one of them. Also, the
Eulerian circuit goes in and out of v the same number of times, which

v∊V v∊V

Let v be a vertex in a directed graph. Its outdegree is the number
of edges that have v has a tail, and is noted d⁺(v). The indegree is
the number of edges that have v has a head, d⁻(v).
The number of edges is Σ d⁺(v)= Σ  d⁻(v).
The out-neighborhood of v is the set of vertices {u : vu is an edge}.
The in-neighborhood is defined similarly. 
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Lemma
If the outdegree of every vertex is at least 1, then the digraph
has a cycle.

Proof of the theorem (continued)
For a graph with m+1 edges, consider the unique nontrivial strong
component. The lemma applies to it, so there is a cycle c. Removing
the edges of c to the digraph preserves the equality of the in- and
outdegrees. Let D' be that reduced graph. We can apply the
induction hypothesis to get an Eulerian circuit in each strong component
of D'. Each such component shares at least one vertex with c, since 
they are in the same strong component of D. To build an Eulerian
circuit, we travel through c. Each time we get to a vertex that
has neighbors not in c, we visit all the edges in its strong component:
we know it is possible since the component is Eulerian. That process
gives an Eulerian circuit in the original digraph.

means the in- and outdegrees must be equal.
(⇐) We prove by induction on the number of edges that if the in-
and outdegrees are the same at every vertex in a strongly connected
graph, there is an Eulerian circuit.
Base case: When there is no edge, the empty circuit is Eulerian.
Induction hypothesis: Suppose that, whenever there is at most m edges,
every graph that has, at each vertex, the same in- and outdegree,
and that has at most one non-trivial strong component, is Eulerian.
- For a graph with m+1 edges, we first prove the following lemma:

Proof (of the lemma)
Let v be a vertex. Since it has outdegree at least 1, there is a
walk starting at v. Since every vertex has outdegree at least 1,
the walk can always be extended. Since the number of vertices in
D is finite, the walk will go back to a vertex it already visited.
The first time this happens, the part of the walk between the
two occurrences of a vertex is a cycle.



5cycle c

Application: De Bruijn cycles

Problem: What is the minimum length for a sequence containing all the
binary sequences of length n? To solve this problem, use the above
proposition and your homework.

n+1Let D  be the following digraph:
- vertices are binary sequences of length n
- there is an edge from a sequence s to another s' if the n-1 last
letters of s are the n-1 first letters of s'.

4As an example, D is illustrated on the left.

Proposition
The De Bruijn graphs are Eulerian.

For the proof, use the previous theorem and verify
the equality of the out- and indegrees.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 1.4
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Trees

We introduce the notion of trees, a very important type of graph.
Over the next week or two, we will study the properties of trees and
forests.

Definition
A graph with no cycle is acyclic.
An acyclic graph is a forest; a connected forest is a tree.
A leaf is a vertex of degree 1 in a tree.

Lemma
Every tree with at least two vertices has at least two leaves.
Deleting a leaf from an n-vertex tree produces a tree with n-1
vertices.

Proof
A tree is always connected so there is a path p between any two
vertices {u,v}. Since there is no cycle, that path can only be extended 
finitely many times without returning to a previously visited vertex. The
last time it can be extended in one direction, that vertex is a leaf, as
there is no cycle.

Nadia Lafrenière
    04/15/2022

star

a forest

not a tree

Every component here (except the one with
a red X on it) is a tree, and the whole
thing (without the one with the X) is a forest.

Caveat: As graphs, trees don't need to have one specific root. We can
always distinguish one root, but it is not needed. We will go back to 
this subject later.

Leaves are highlighted. A star is the tree in which there is
one vertex adjacent to every other.



2When one deletes a leaf u from a tree, it does not disconnect it,
since there is no path going through that vertex (not as an endpoint),
i.e. for v,w in the graph, there is no path passing through u from v
to w.
One consequence of that lemma is that we can build every tree with 
at least two vertices by "adding leaves". We will discuss that topic
on Wednesday.

The following theorem gives multiple characterizations of trees:
Theorem
Let G be a graph with n vertices (n ≥ 1). The following statements
are equivalent:
(A) G is connected and has no cycles.
(B) G is connected and has n-1 edges.
(C) G has no cycles and n-1 edges.
(D) G has no loop and has, for each pair of vertices {u,v}, exactly
one uv-path.

A B

C D

The proof of such a statement is a closed walk
that visits every vertex in the complete digraph
with vertices A, B, C and D:

Proof
(1 A⇒B) We need to prove that if G is connected and has no cycle, it
has n-1 edges.
By theorem from 4/8, it must have at least n-1 edges for it to be
connected. To prove there is at most n-1 edges, we prove that a
graph with n edges has a cycle (which is not permitted, by hypothesis).
This proof is by induction on n (the number of vertices):
Base case: If n=1, the edge is a loop and that is a cycle.
Induction hypothesis: Assume a graph with k vertices and k edges has
a cycle.
Induction step: We need to prove that a connected graph with k+1
vertices and k+1 edges has a cycle. If there is a leaf, remove it and
delete the incident edge; applying induction hypothesis tells us that 
there is a cycle in the rest of the graph.
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Until now, we proved A<=>B. They are equivalent, so we can use them 
together from now on.

Now, A, B and C are equivalent. That means that two characteristics
among connectedness, no cycles and n-1 edges are sufficient to show
a graph is a tree.

(5 B⇒D) Since B⇒A, the graph has no cycle; in particular, it has no
loop. It is also connected, so there is a path p between any pair of
two vertices {u,v}. To show uniqueness of that path, we use the
hypothesis that there is no cycle, and contradiction: Assume there
exist 2 paths p and q between u to v.

(3 A⇒C) Since A⇔B, we know that G is connected, has no cycle
and has n-1 edges, which already proves C).
(4 C⇒B) We want to show that if a graph has n-1 edges and no
cycles, it is connected. We look at each of the k components.
In the component i (1 ≤ i ≤ k), assume there are n(i) vertices.
Since the component is connected and has no cycle, it has n(i)-1
edges (by A⇒B). Hence, the total number of edges is

i=1 i=1
Σ (n(i)-1)=Σ(n(i))-k=n-k. However, the hypothesis of C is that the
graph has n-1 edges. So there is exactly one component, and the
graph is connected.

kk

If there is no leaf, then the lemma from page 1 proves the graph
is not a tree.
(2 B⇒A) We need to show that if G is connected and has n-1 edges,
it has no cycle. We prove the contraposition: if G is connected and
has a cycle, there is more than n-1 edges. 
Since G has a cycle, there is at least an edge that is not a cut-edge
(by the theorem from 4/1). Deleting that edge would mean the graph
has one fewer edge and is connected, which means, by theorem from
4/8, that the graph with one fewer edge has at least n-1 edges. So
the original graph has at least n edges.



4Let u' be the first vertex in p and q whose next edges differ,
and let v' be the next vertices that appear both in p and q. Then,
the part of p  between u' and v' and the part of q between u' and
v' are paths with no common vertices that have the same endpoints;
gluing them together creates a cycle. Hence, there is a unique path 
between u and v, for any pair of vertices {u,v}.
(6 D⇒A) Since there is a path between every pair of vertices, the
graph is connected. The uniqueness of the path means there is no
cycles, proving A.

Spanning trees
Let G=(V,E) be a graph.
A graph is a spanning subgraph of G if it has vertex set V.
A spanning tree is a spanning subgraph that is a tree.

Example

In purple, five spanning subgraphs of the graph in blue. Only the first,
third and fourth ones are spanning trees.

Theorem
Every connected graph has a spanning tree.

Proof
Every connected graph has a connected spanning subgraph. To remove
the cycles from it, delete one after the edges that are in cycles.
Once there are 1 edge fewer than vertices, the graph will be a tree.

Corollary
a) Every edge of a tree is a cut-edge. (by A)
b) Adding one edge to a tree forms exactly one cycle (corollary of
A⇒B).



5Distance in trees and graphs

Example

Example

Theorem
If G is a simple graph, diam(G)≥3 => diam(G)≤3.

Proof: Read and understand as homework. In the book, that is 
Theorem 2.1.11, p.71.

The center of a graph is the induced subgraph with vertices of
minimum eccentricity. 

The Petersen graph and complete graph have center
the whole graph. The star has, as center, only the
central vertex.

Distance: d(a,b)=d(b,c)=1, d(a,c)=2
Diameter 2. A star always has radius 1, since the 
central vertex has eccentricity 1. The diameter,
for all graph, is the maximal eccentricity.

The Petersen graph has radius and diameter 2.
Recall there is an edge between two vertices if they
represent disjoint 2-sets of {1,2,3,4,5}.
If two vertices ij and jk are not adjacent, they must
share an element (as sets). Then, lm is disjoint from 
ij and jk, so ij-lm-jk is a path of length 2.
Here, {i,j,k,l,m} represents {1,2,3,4,5}.

If G has a uv-path, the distance between u and v, noted d(u,v), is
the smallest length of a uv-path. If G has no such path, d(u,v)=∞.
The diameter of G, diam(G), is the maximum distance between two
vertices.
The eccentricity of a vertex u is the distance to the furthest vertex.
The radius is the minimal eccentricity.
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6Theorem (Jordan, 1869)
The center of a tree is a vertex or an edge.

That means it cannot be a set of vertices, whenever the graph is
a tree. Of course, the examples above show it is not true for graphs
in general.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 2.1


