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Basic definitions and some problems 03/28/20272

Can you draw These pictures, without ever crossing your path?

WO

Can you draw This picture without ever lifting your pencil?

=

These are children problems, but also real=life problems in graph
theory, namely to know whether a graph is planar, or similar fo
know if a graph is Eulerian,

The first problem: Seven bridges of Konigsberg (Euler, 1736)

Euler was wondering if one can go
from one place in the Kénigsberg
area, and back 1o that original
place, by faking every bridge
exactly once,

(This is considered to be the first
solved problem in graph theory).

A modelisation of the problem:

This graph model the
areas of the city, There
is no need to know the
exact locafion ot each
bridge.

Remarks:

— Since we have To go back where we starfed, we do not care where
we startf,

— tveryfime we go from a location to another and back, we cross 2
bridges adjacent fo that location,



Since every island has an odd number of bridges, it is not possible @
fo visit all the islands by faking every bridge exactly once,

Some definitions

A graph G is made of a sef of verfices (modeling some objects), and
a sel of relations befween fwo vertices, called the edges. We denote
6 - (V,E) for the graph with vertices V and edges E. Any edge is a

pair of fwo vertices called the endpoints.,

We draw a graph (on paper or on the compuler) by representing the
vertices as points, and we draw a curve befween two vertices if they
are endpoints of the same edge. We can draw differently the same
graph.,

Example

A loop is an edge whose endpoints are the same vevTex.Q
Multiple edges are edges having the same pair of endpoints.
A simple graph is a graph having no loop nor multiple edges.

7. <>

Not simple graphs simple. grapk

When uv (or equivalently) vu is an edge, we say fThe verfices u and
v are adjacent, or that they are neighbors,

Subgraphs and containment

A graph G'=(V',E") is a subgraph of G-(V,E) it V'cV and E'cE,
We fhen say that 6' is contained in G, denoted G'ca.



Example ®
Every graph with n verfices is a subgraph of the complete graph with
m=n verTices,

A graph is connected if, for every pair of vertices, There is a path
(i.e. a sequence of edges) between them that belongs to the graph,
1T is ofherwise disconnected.,

Some important problems in graph theory

1, Acquaintances

Do every set of six people contain at least three mutual acquainfances
or three mufual strangers?

That guestion can be represented using a graph. Every person is a
vertex, and there is an edge befween fwo persons if they know
each ofher, Here, we assume knowing each ofher is a mutual relation,
l.e, knowing a celebrity usually does not count,

— Two graphs. The first one is a
G 4 . s—vertex graph with no three mutual
° strangers, nor three acquaintances.,
As a homework, you will have The second one has six verfices, and

fo prove your solufion to this contain both three mutual strangers
sTatement, and three acquaintances (a cligue).

Some useful vocabulary:

A cligue in a graph is a set of pairwise adjacent verfices, i.e, a
complefe subgraph,

An independent set is a subset of verfices with no adjacent pairs.,

a A cligue

@?? e An independent setf

2, Job assignments
1t there are m jobs and n people, not all qualified for all the jobs,
is there a way we can fill all The jobs?

Definition
A biparfife graph is the disjoint union of two independent sets.




veople The edges are between a job and ®

% jobs a gualified person for that job.
(=)

(The jobs cannot all be filled in this example),

3, Scheduling and avoiding conflicts
My high school used to have a very long exam sessions at the end of
the year, and there were still some conflicts, 1 wish the administrators

knew graph Theory..

Vertices: Subjects
Edges: If someone fakes both subjects,

SiS (@)
\ Pusicdl e, eventual scheduling conflicts,
//OEducahow

English ’ HisTory

ol — @ A coloring of a graph is a partition of
Cremistry a set info independent sets, Scheduling
with no conflicts is equivalent fo coloring,
Schedule: - |
| | 1t we want fo use the minimum time, we
1, History—English—PE .
| should use as few colors as possible,
2. Chemistry
3, Math

Reference: Douglas B, West, Infroduction fo graph theory, 2nd
edifion, 2001, Sections 1,1,1 and 1.1.2.
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We saw last class that fwo graphs are the same if they are differently,
as long as we are simply "moving the verfices'., The goal of foday's
lecture is to make this sfatement more formal, One tool we will use is
adjacency and incidence matrices. We will as well start classifying the
graphs.

Matrices: adjacency matrix and incidence matrix

Let 6-(V, E) be a graph without any loop (it does not have fo be a
simple graph). We number the vertices from 1 fo n and the edges
from 1 to m,

The adjacency mafrix of 6, written A(G), is the mafrix whose (i,j)—
enfry is the number of edges with endpoints the vertices i and j,

The incidence matrix ot G, writfen M(G), is the n—by—m matrix whose
(i,))—entry is 1 it verfex i is an endpoint of edge j, and otherwise o,

The adjacency matrix is always a symmedfric matfrix,
The graph on the left has the following adjacency and incidence
mafrices:

e, N 01 10 110 00
e A 101 10
3 g ) 1 0 2 0 _
e, A(G) = 1 2 0 1 M(G) = 01 1 11
0010 0 0 0 01
Ny €;

The degree of a vertex (in a loopless graph) is The number of
edges incident o that verfex,

Isomorphisms

So when are Two graphs the same? We will answer this question using
the notfion of a bijection, As a reminder, this an injective and
surjective function, or a one—to—one correspondence.,

An isomorphism from a simple graph 6 1o a simple graph H is a
bijection :V(6)-V(H) such that every edge uv of 6 is mapped
fo the edge f(u)f(v) of H., We then say G and H are isomorphic,
denoted 6 =H,




This is equivalent fo asking that there exists a simultaneous @
permufation of the rows and columns of the adjacency mafrix of 4
that would yield the adjacency mafrix of H,

Example
The following graphs are isomorphic:

1 3 1 3

2b<‘4 II/IN
This is easily seen with the bijection that exchanges 1 and 3.
Remarks:
— Finding a bijection of the labels is the way fo prove two graphs
are isomorphic, However, To prove They are not isomorphic, there are
many ways, For example, if the list of degrees is nof the same, uou
will never be able fo find an isomorphism, Or it the number of edges
(or edges) do not correspond. Among ofhers.,
— The isomorphism relation is an equivalence relation, i.e. this is a
symmetric velation (G6=H iff H=G), a fransifive rvelation (6=H and H=T
imply 6=7) and a reflexive one (6=6), That means that we can split
the graph into equivalence classes,

Example

The following graphs are not isomorphic., They both have six vertices,
all of degree 3, and nine edges, and They are both connected, but
one is biparfife and the other is not, Since they don't have the same
properties, they are not isomorphic,

%ﬂ 8 No friangle appear in the first graph.,

Example
All the isomorphism classes for graphs with 4 vertices are

II.\IX><7IN
(74 I ZAN B AN

Special graphs

There are some graphs thal have special names, and that turns out fo
be handy for whenever we want to use them or to classify them,



®

Complete graphs: Graphs with n verfices and (3)edges.

Example: . @
K. ’

Complete bipartite graphs: Biparfite graphs with independent sefs of
size s and v, with sr edges,

K., Example: y W

Paths: Connected graphs, with all the vertices ot degree 2, except
at most two who have degree 1,

P Example: ¢, \/\

Cycles: Paths with as many edges as vertices,

Example: (.
Cn

The complement of the graph 6 is the graph fhaf has the same

verfices and whose edges are all the edges that do not belong to 6:
\<\V\- E(e)= G

A graph G is selt—complementary if its complement G is isomorphic
fo 6.,

Example: Cg is self—complementary,

' %G

A decomposition of a graph is a list of subgraphs in which every
edge appears exactly once,
Example: The cube decomposed info copies of K,

Note: K5 is otten called the claw, E

Proposition
A graph G is self—complementary if and only if the complete graph
is a decomposifion info two copies of a.




The Pefersen graph ®
The Petfersen graph is a 10—vertices graph with 15 edges that is very
famous, as it is an example or a counfer—example fo many phenomena,

The Petersen graph is the graph of 2—element subsets of 1,2,3,4,5,
and there is an edge befween 2 subsets if fheir infersection is empty.

2 Some properties of the Petersen graph:

— Two non—adjacent verfices share exactly one

i5 44 neighbov ,
‘A' — The graph has no triangle, but is not biparfite,
P\ — The shorfest cycle in the Petersen graph has length s,
A (The length of the shortest cycle in a graph is called

the girth of the graph,)

reference: Douglas B. West, Introduction to graph theory, 2nd edition, 2001, Section 1.1
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Today's lecture aims fo define the proper vocabulary to talk about
Trajectories and connectedness in graphs,

Definifions

Recall that a path is a graph whose verfices can be ordered without
repefifion (except maybe for the endpoints) in a sequence such thaf
two consecufive verfices are adjacent. A path is a u,v—path if it starfs
at verfex u and ends af verfex v,

A walk is a list (yve,v,.,e,v) of vertices and edges such that the edge
e. has endpoints v and Ve A walk is a u,v—walk if its endpoints

(the first and \asT verfices of fhe walk) are u and v, If there is no
mulfiple edges, we can write the walk as (v,v,.,v).

A trail is a walk with no repeated edge. Similarly, a u,v—Trail has
endpoints u and v,

The points that are not endpoints are internal vertices.

The length of a walk, frail, path or cycle is its number of edges.
A walk or a frail is closed if ifs endpoints are the same,

Example .
: (a,x,a,b,x,u,4,%,a) specifies a closed walk,

. ¢ but not a trail (ax is used more than
Y ) (a,b,%x,u,4,%x,a) specifies a closed trail,

The graph confains the five cucles (a,b,x,a), (w,u,x,u), (v,4,%x,Vv),
(x,uy,v,x) and (y,c,d,y),

The trail (x,u,4,c,d,4,v,x) is not an example of a cucle, since verfex
4 is repeated (so if is not a path),



Lemma @
Every u,v—walk confains a u,v—path,

Proof
The proof can be done using the principle of strong induction, and

we induce on fThe number of edges.

Base case: No edge, u=v is the only vertex in the graph., Only walk
has length o, and is therefore a path,

Induction hypothesis: Assume that, for a walk with k<n edges, fhere is
always a path with the same endpoints,

Induction sfep: The walk has n edges. There are Two cases: either
there is no repeafed vertex or only the endpoint is repeated, and
then the walk is already a path, or there is a repeated vertex x.
In the latter case, we delefe the edges between the first and last
occurrences of x, which leaves us with only one copy of %, and a
u,v—walk with fewer than n edges. We can thus use fhe induction
hypothesis to conclude that fhere exists a u,v—path in the u,v—walk,

O
Example: The u,v—walk from previous page.
In the walk (a,%,a,b,%x,uu,x,a), we delefe
whal happens befween the first two
occurrences of a, and gef the closed walk
(a,b,x,u,4,%x,a). Then we delete what happens
between fhe two occurrences of x, and gef
the cycle (a,b,x,a), which is a path.,

Connectedness, components and cufs

Recall that a graph is connected if and only if fThere exists a path
between u and v for every pair of verfices wu,vi,

A component of a graph G is a maximal connected subgraph,
A component is trivial if it has no edges; in this case, the unigue
vertex is said 1o be an isolated verfex,




Example ©

The tollowing graph has 4 components, each of which are circled in
orange,

> A

Proposition
Every graph with n verfices and k edges has at least n—k components,

& An isolafed vertex

Proof

The proof can be done by induction on k., The case of k»n is obvious,
since the number of components is always nonnegative,

Base case: If k=0, then each of the n vertices are isolated, and there
are n components,

Induction hypothesis: Assume that a graph with k=1 edges and n verfices
has af least n—k+1 components,

Induction sfep: Let G=(V,E) with |VI-n and |EI-k, Remove the edge e
fo get G6—e., The component of G containing e can either be splif into
Two components by removing e, or stay a component, So G has either
the same number of components as G6—e, or one fewer, By induction
hypothesis, G—e has at least n—k+1 components, so G has at least n—k,

In the last proof, we had fo distinguish the cases where removing the
edge was creating a new component or not, An edge whose delefion
creates new component has a special name:

A cut—edge or cuf—verfex of a graph is an edge or verfex whose
delefion increases the number of components, We write 6—e or 6—M
for the subgraph of G obtained by deleting an edge e or a sef of
edges M; we write 6—v and 6—S for fhe graph obtained by deleting a
verfex v or a sef of verfices S along with their incident edges.




A subgraph obfained by delefing a subset of verfices and fheir imcidev@
edges is an induced subgraph: we denote it 61T if T-WV\S and we
deleted the verfices in S,

Ex‘amp\e 4 Vertices 3 and 5 are cut—vertices, and the edge
RS 2 . q is the only cut—edge.
7N . The induced subgraph for fthe vertices 1, 2,
: 509 3,4—8V]Ol61‘\3$aq
Theorem

An edge is a cut—edge if and only it if belongs fo no cycle.

Proof

LeT e-uv be an edge in the graph 6, and let H be the component
containing e, We can restrict the proof to H, since deleting e does not
influence the other components. We want to prove that H—e is
connected if and only if e is in a cycle in H,

1t e is in a cycle ¢, c—e is a path P between v and u avoiding the
edge e, To show that H—e is still connected, we need fo show that,
for every pair of verfices ix,yi, there is a path befween x and 4. Since
H is connecled, there exists in H such a path, If that path does not
confain e, it is still in H—e, Ofherwise, replace e by P, and remove an
edge from that path everyfime T appears twice consecutively,

1t H—e is connected, then fhere exists in it a path P between u and v,
Hence, adding edge e-uv creates the cycle P+e, O

The last theorem allows us to characterize cut—edges. Would such a
theorem be possible for cut—vertices? The following example proves that
asking for it To be outside a cycle is not a requirement for a cut—
verfex, since verfex 3 is a cuf—verfex, and belongs fo two cycles:



Removing vertex 3:
Y

‘ Two connected
O 0 components

T

reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001, Section 1.2
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Today's lecture aims fo give the imporfant properties of bipartite
graphs. We will also define Eulerian circuits and Eulerian graphs: This
will be a generalization of the Kénigsberg bridges problem,

Characterizafion of biparfite graphs

The goal of this part is fo give an easy fest fo determine if a graph
is bipartite using the nofion of cycles: Konig theorem says that a graph
is bipartite it and only if it has no odd cycle,

Lemma

Every closed walk of odd length confains an odd cycle, This is called
an odd closed walk,

Proof

We prove it using strong induction on the length of the walk (i.e,
The number of edges).,

Base case: length 1, The walk is a loop, which is an odd cycle,
Induction hypothesis: If a walk has odd length at most n, then it
contains an odd cycle,

Induction step: Consider a closed walk of odd length n+1, 1f it has
no repeated verfex (except the first and last one), this is a cycle
of odd length, Ofherwise, assume verfex v is repeated, We can split
the walk info two closed walks starfing and ending at v, one of
even length, and one of odd length smaller than n. By induction
hypothesis, the latfer contains an odd cycle,




That lemma will be helptul for characterizing bipartite graphs, of
course, biparfife graphs can have even cycles, which starfs in one
independent set and ends there,

We can represent the independent
sets using colors,

Theorem (Konig, 1493s)
A graph is biparfite if and only if it has no odd cycle,

Proof

Notice fthaf a graph is biparfite if and only if all its components are
bipartife., So we do the proof on the components.

= We prove fhe confraposifive: it is has an odd cycle, it is not
bipartite.

Since every cycle must end af fhe verfex where it starfs,

it starts and ends in the same independent set, Since every
edge is going from one set fo the ofher, we alfernate
between the fwo sefs., At the end of the cycle, we cannot
close it, since we would need fo change the set of the
first vertex, Hence, if a connected graph is biparfite, it has
no odd cycle.

not possible

=We still need To prove that a connected graph without odd cycle is
biparfite, If the graph has only one verfex, it is biparfife,

Otherwise, start at verfex u, and color ifs neighbors with color blue,
Then, color the neighbors of the blue vertices in red, and repeat this
process by coloring the neighbors of the red verfices in blue, unfil

all vertices have been colored, 1 claim thal no verfex will change color
in That process; assume otherwise, that v is changing color, That would
mean fhat fhere exists a path of odd length from u fo v (fhe one
That colors v in blue), and a path of even length doing it (the one
that colors v in ved). The combination of these two paths is an odd
walk, and contains an odd cycle, which is prohibited by the hypothesis.,
Hence, the coloring is well defined, and the two colors represent
independent sefs, The graph is bipartite, []



. ®
() ° ®
Q odd oycle even cycle
neither blue
nor red

Technigue for checking whenever a graph is biparfife:
— I1f it is biparfite, prove it by finding fwo independent sets.
— If it is not biparfite, find an odd cycle,

Eulerian circuits

A graph is Eulerian if it has a closed trail containing all the edges.

The graph in the Kénigsberg bridges problem is not Eulerian, We saw
fhat the fact that some vertices had odd degree was a problem, since
we could never vefurn fo that verfex after leaving it tor the last fime,

Theorem

A graph is Eulerian if and only if it has af most one wnontrivial
component (i.e, component with edges), and if every vertex has even
degree.,

Proot

We first prove = by proving the confrapositive: if a graph has more than
one non—Trivial component, or it there is a verfex of odd degree,

Then the graph is not Eulerian,

1f a graph has at least two non—trivial components, fhere can't be
a walk going through all the edges, since they are in separate
components,

1f a graph has a verfex of odd degree, we are in fhe case of the
Konigsberg bridges: we can leave the verfex more often than we can
come back (or vice—versa), and Thus our trail cannot be closed.

= We need 1o prove that a connected graph with only vertices of even
degrees is Eulerian, We can ignore the isolafed verfices for this since
we are focusing on the edges. The following lemma is useful:



Lemma

1t every vertex of a graph has degree af least 2, then it
confains a cycle,

Proot

Let P be a maximal path in that graph., If it is a cycle,
we are done, Oftherwise, lef u be an endpoint of P,

Since if has degree at least 2, u has a neighbor v not

in P. Bul since P is maximal, thal means that v is already
in P, and the edge uv completes the cycle.

Proof of the theorem (continued)

We proceed by induction on the number of edges.

Base case: 0 edge, the graph is Eulerian,

Induction hypothesis: A graph with at most n edges is Eulerian,
Induction step: If all vertices have degree 2, the graph is a cycle
(by definifion) and it is Eulerian, Otherwise, let 6' be the graph
obtained by deleting a cycle, The lemma we just proved shows it is
always possible to delefe a cycle., By induction hypothesis, G' is
Eulerian, To build an Eulerian circuit in G, start by the cycle we just
deleted, and append the Eulerian circuit of G-, -

Proposition
Every graph with only vertices of even degree decomposes info cucles,

Eulerian circuits are closed trails that pass through all edges., A
similar property is being Hamiltonian: a Hamiltonian circuit is a circuit
That passes Though all verfices exactly once, A Hamiltonian graph is
a graph with a Hamiltonian circuit,

Reference: Douglas B. West, Introduction to graph theory, 2nd edifion, 2001, Section 1.2
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Today, we are doing a bit of combinatorics and will deduce some
properfies on the degrees, number ot edges and number of verfices,

We already defined the degree of a verfex in a loopless graph fo be
the number of edges incident fo it,

For a generval graph, define the degree o|6(v) of the vertex v to be
fhe wnumber of edges incident fo it, with each loop counted twice,

The maximum degree of a vertex is denoted A(G) and the minumum
degree is denofed 6(4).

A graph is said fo be reqular if 6(6)-A(G).,

The order of a graph 6-(V,E) is V|, as The size of 6 is IE.

Example
- K, s a regular graph, Each verfex has degree n—1,
- K, s reqular if and only if m=n, Then, the degree is always n.

— A connected reqular graph that has the same order and size is a
cycle,

— Hypercubes are rveqular graphs, E

Counting and bijections

Proposition (degree—sum formula)

1t 6-(V,E) is a graph, then Zola(v) = 2|El .

Proof

For each edge, there are two endpoints (maybe equal), If the
endpoints are different, this edge contributes for 1 in the degree
of two different verfices, 1f the edge is a loop, it adds 2 to the
degree of the verfex it is incident to, So either way, every edge
accounts for 2 in the fotal degree count,

Corollary

In any graph 6-=(V,E), the average degree is 21El/IVI, and
6(a) =12IEl/IVI =A(6).,




Covollary
Every graph has an even number of vertices of odd degree,

Corollary

A k—=veqgular graph (i.e. a regular graph in which the degree of each

verfex is k) has kIV|/2 edges.

Example: Hypercubes
The n—dimensional hypercube H, is defined recursively as:
- Ho is The simple graph with one verfex

@

- H_ s obtained by creafing fwo copies of H and appending an edge

betfween corresponding vertices in the fwo copies,

H H, "l?_

Hs
o
N 2 5! 1 y'
Ae \ i 'tl v ‘ﬂ"
Proposition

H, s regular, as each verfex has degree n.,

Proof

The proot can be done by reqular induction,

The base case is H_, and it has no edge,

Induction hypothesis: The n—dimensional hypercube H, s n—regular,
Induction step: The (n+1)—=dimensional hupercube is made of two
copies of H , and we add an edge between every pair of similar
vertices in the two copies. This way, we add exactly one fo the

degree of each verfex from H , and fhat degree is, by induction
hypothesis n., '

Proposition
1t k>0, then a k—veqular bipartite graph has fhe same wnumber of
vertices in its fwo independent sefs,

< 7 Either not bipartite or not
regular,




Proof @

Since The graph is regular, all vertices have degree k, If there are

m edges in fofal, the sum of the degrees for all the verfices in one
independent set is m, as every edge has exactly one endpoint in that
set, Since the graph is k—reqular, there are m/k verfices in each sef,
so the order of both sefs is the same,

]
Vertex—deletion and reconstruction conjecture
Is it possible fo veconstruct a graph if you have only a list of ifs
subgraphs? Therve is a long—standing, and still open conjecture sauing
it is, and so far we know it is almost always possible (that being
undersfood in a probabilistic sense).,

For a graph G, a verfex—deleted subgraph is an induced subgraph G6—v
obtained by deleting a single vertex v,

Example
><l has verfex—deleted subgraphs 4 x D/
x| |
Proposition
For a simple graph G-(V,E) of order ny»2 and size m,
M= :2{\/#6((7-\[\

N-L

where #E(G—v) is the number of edges in the graph G—v.,

Proot

We start with the summation, and we will prove the summation is equal
fo m(n—2):

;#E(&—v% Zlel—dG(v) - ZVIE| - Zvola(v) = mn—2m

Conjecture (Reconstruction Conjecture — Kelly, Ulam, 1942)

1t G is a simple graph with at least three verfices, then G is uniguely
defermined by the list of ifs vertex—delefed subgraphs (up to
isomorphism),




Note that the hypothesis that 6 has at least three vertices is @
important, Ofherwise, we would find a counferexample with two vertices,
since both simple graphs with two verfices have fhe same set of
vertex—deleted subgraphs, e o o

Example

><‘ has verfex—delefed subgraphs 4 x D/
1% \ l

To reconstruct the graph, we know that 4 verfices have degree
#€(6)—4 and 1 has degree #E(G)—2. Using the proposition, the
number of edges in G is (2+4x4) /36, So the list of degrees is
(2,2,2,2,4), and The graph is connected.

That means that the vertices are in two cycles, The length of the
cycles can be found by looking af the subgraphs: there is af least one
cycle of length 3, Since the graph is simple, both cycles have length
3 and the graph has fo be isomorphic o the bowtie,

Even fhough the conjecture is notf proven, there are a number of cases
that are known, Also, we can know some properfies from fhe list of
subgraphs; for example if fhe graph is connected,

Reference: Douglas B, West, Introduction fo graph theory, 2nd edition, 2001, Section 1.3
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Extremal problems consider the minimum and maximum numbers some
sTafistics on a class of graphs can reach, We infroduce some of the
fypes of proots useful in graph fheory: Algorithmic, and by
construction,

First example

In any simple graph (V,E), the maximum number of edges is
(,v() . (Vi IVI=\)

2 2

Proot
In a simple graph, there can be af most one edge per pair of
distinct vertices, The maximum wnumber of edges appear in Kor

This is an exfremal problem, since we are looking at the maximum
number of edges, The class of graphs here is all simple graphs.

Example

In a biparfife graph with independent sets of size k and m, fhere
can be at most km edges.

Independent sets of size 2 and 4,

W _\V/I ¢ edges al maximum, km is the number

of edges of K,

Edges in connected graph

Proposition
The minimum number of edges in a connected graph with n vertices is
n=—1.

Proot
We need fo prove two things:

— It a graph with n verfices has fewer than n—1 edges, it is not
connected,

— There exists a connected graph with n verfices and n—1 edges.




Recall from last week (Friday), that a graph with n vertices and @
m edges has af least n—m components, Hence, if m<n—1, the graph

has at least 2 components and is not connected.

Also, The path with n vertices has n—1 edges and is connected, proving

That the minimum is realized, N [

Remark (on the proot fechnigue)

When giving the solufion fo an exfremal problem, there are two parfs

fo be proven:

— That the value we give is minimal (or maximal), i.e. that you cannot
give a lower (respectively, higher) value,

— That fhis value can be realized on at least one graph of the class we
consider,

Proposition
Let 6 be a simple graph with n verfices, It the minimum degree is
6(6)= (n=1)/2, 6 is connected.

Proot

The minimum degree of the graph means that every vertex should have
at least this number of neighbors, in a simple graph,

To prove that 6 is connected, we must show that there is a path
between any pair of vertices w,vi. We will in fact prove that there
exisTs a path of length at most 2,

— If (w,vi are adjacent, they are obviously in the same component,

— Otherwise, they share at least one neighbor w: There are n—2 other
vertices, and fhe sum of their degree is d(u)+d(v)=n—1, Hence,
u—w=—v is a path connecting them, O

A bound is said fo be sharp if improving it (reducing a lower bound or
increasing an upper bound) would make the statement wrong.

The bound in the last problem is sharp., To prove it, we give an example
ot a graph with n vertices and minimum degree |7 =1 thaf is not

connected: This graph is the disjoint union of KﬂJ and Kpq e
2 7
1 vertices
@ %@ Minimum degree is 4, just under
5 = (1—1)/2.

KS/ degree 4 Ke/ degree s Graph is disconnected,



Biparfite subgraph 3)
Here we prove thaf, given a graph G, we can always find a biparfife
subgraph with at least a fixed number of edges. We give an

algorithmic proot fo construct the graph, but a proot can also be done
by induction,

Theorem
Every loopless graph G=(V,E) has a biparfite subgraph with at least IEI/2

edges.

Proof (algorithmic)

We start with any parfition of the vertices info two sets X and V.
Let H be the subgraph containing all the vertices, but only the edges
with one endpoint in X and one in Y.

@ ﬁ b edges, instead of 10
-

Let v be a vertex in X, If H has fewer than half the edges incident to
v, then it means that v has (in 6) more neighbors in X than in Y, To
increase the number of edges in H, switch v to Y. The number of
edges just increased.,

LDme oo = <O -

O - less than half the edges

As long as H does nof have at least half the edges of G af every
verfex, fThere are verfices that can be swapped from X fo Y or ¥ fo X;
repeal this process, When it ferminates, the wnumber of edges

in His always at least half fhe number of edges of a. ]
Triangle—free graphs

A graph is said o be friangle=free if it has no three b

vertices thal are all adjacent. In general, a graph 6 is A
H—free it it does not contain H as a subgraph, 'A'

13 15

The Pefersen graph is friangle—free (but not bipartite),



Theorem (Mantel, 1907) ®
The maximum wnumber of edges in a simple triangle—free graph with n

vertices is t‘d

Proof

For The proof, we again need fo prove two things:

—that a friangle—free graph with n vertices cannot have more than L“;J
edges.

— that there exists, for any n, a graph with n verfices and t‘—‘J edges
That has no friangle,

For the first part, assume the graph is friangle—free, Take a verfex v
of maximal degree A, Ifs Aneighbors cannot have edges among them,
So every edge of G must have af least one endpoint in a _
non—neighbor of v, or in v itself, There are n—A such v X
vertices, Each such verfex has degree as most A, |

Therefore, we give an upper bound on the number of edges:

the wnumber of edges is at most A(n—A) (because n—A is the number
of vertices not adjacent to v). Maximizing A(n—A) gives A=n/2.
Hence, the number of edges is at most t‘d

For the second part, we must prove that a triangle—free graph has ";J
edges., This is the case of |<m L

We can split 7 vertices info two sefs

W of 3 and # vertices, which leads to
12 edges:, which is the smallest integer
below 44/4,

reference: Douglas B, West., Infroduction fo graph theory, 2nd edifion, 2001, Section 1.3



