
Math 38 - Graph Theory
Graphic sequences

We look at the list of degrees to get some information on the graph.
We also look at what list of nonnegative integers can be the degree
sequence of some graph.

d1 ≥ d2 ≥ . . . ≥ dn ≥ 0

Let G be a graph with vertices v, v, …, v. The degree sequence
of G is the list d(v), d(v),…, d(v). Usually, we write this sequence
in decreasing order (and reorder the labels accordingly):

Proposition
The nonnegative integers d, d, …, d are the degree sequence of
some graph if and only if their sum is even. 
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Proof
We need to prove that the condition is both necessary and sufficient.

=> (the condition is necessary) We already showed (last week) that
the sum of the degrees in a graph is always even.
<= (the condition is sufficient) This part of the proof is done by
constructing a graph with a given degree sequence.
First, we consider all the vertices with odd degree (there is an even
number of them). We pair them by drawing exactly one edge at each
of these odd vertices. After this step, the number of endpoints to
be added to every vertex is even, so we can add half this number
of loops, making it a degree sequence.

Example
(5,3,2,1,1) can be realized on a (non-simple) graph in this way:

Of course, this technique does not work for simple graphs, because of
the loops. Moreover, 5 cannot be the degree of a vertex in a simple
graph with 5 vertices.



2A graphic sequence is a list of nonnegative integers that is the 
degree sequence of some simple graph. A simple graph with degree
sequence d realizes d.

Characterization of graphic sequences
We already noticed the two obvious conditions for a nonnegative
integers sequence to be graphic, i.e. the sum of degrees must be
even and the maximal number cannot be greater than n-1. However,
this is not enough, as shown with the degree sequence (2,0,0), which 
must necessarily involve a loop.

Theorem (Havel 1955, Hakimi 1962)
The only one-element graphic sequence is (0).
For n>1, an integer list d of length n is graphic if and only if d' is
graphic, where d' is obtained by deleting its largest element (Δ) and 1
from the Δ next largest degrees.

Example
The graph below has degree sequence d=(3,2,2,2,1).
It is obvisouly graphic by the picture. Here, Δ=3, and we obtain d'
as (1,1,1,1). Notice that it is not the degree we obtain by deleting the
highest-degree vertex (shown on the right), which would be
(2,1,1,0). And (1,1,1,1) is also realizable, as shown below.

(2,1,1,0)(3,2,2,2,1) (1,1,1,1)

Proof (of theorem)
The case where there is only one vertex is obvious.
We need to prove that this condition is necessary and sufficient when 
n>1.
<= (sufficient) If d' is realizable, there exists a graph G' with vertices
having d' as degrees. I want to add a vertex that has degree Δ 

greater than the largest degree of G'. To do so, I add the vertex
and connect it to the Δ vertices with larger degrees in G', realizing d.
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d' = (2,1,1,0)
d = (3,3,2,2,0)

Example

The case of loopless graphs
Multigraphs (even loopless) have a much easier characterization for 
degree sequences, as given by this theorem of Hakimi.

Theorem (Hakimi, 1962)
A sequence of decreasing nonnegative integers d,d,…,d is the degree
sequence of a loopless graph if and only if its sum is even and

d1 ≤ d2 + . . .+ dn

=> (necessary) There are two cases to consider. 1) The vertex v of
degree Δ has neighbors that have the Δ next highest degree. Deleting
v and its incident edges yield a graph with degree sequence d'.
2) Consider the neighborhood of v (the vertex of higher degree)
and call it N. Let S be the set of the Δ vertices having the highest 
degrees (except for v). Case 1) is when N=S, so here they are distinct.
We will transform G to get N=S.
Take a vertex u in N\S, so u is adjacent to v, but has a low degree,
and take w in S\N (not adjacent to v, but high degree).
Since w has higher degree than u in G\{v}, w has at least one neighbor
x that is not adjacent to u.

By switching the edges uv and xw to vw and ux (from the blue to the
red in the picture), we increase |N⋂S|. We repeat this process as long
as N≠S. When N=S, we use the first case.

No edge in the
original graph.

(3,2,2,2,1)
(3,2,2,2,1) (1,1,1,1)

↦ ↦ ↦
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Proof is left as homework for next week's set.
Hint: You can proceed by construction, but it might be easier to do 
induction (not necessarily on the number of vertices).

Graphs with same graphic sequence

In the last proof, we exchanged the endpoints of some edges to get
a new graph with the same graphic sequence.

A 2-switch is the replacement of a pair of edges {uv, wx} by
{ux, vw}, provided ux and vw did not already exist in the graph.

Remark
A 2-switch always preserves the degree of each vertex. 

Example

↦

2-switch

Both graphs have degree sequence (2,2,2,2,2,2).

The proof is omitted, but can be found on page 47 of the textbook.
The condition is clearly sufficient, as the 2-switches preserve the 
degree of each vertex.

Theorem (Berge 1973)
Two simple graphs G and H have the same graphic sequence if and
only if there is a sequence of 2-switches from G to H.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 1.3


