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BiparTife and Eulerian Graphs 04/04/720272

Today's lecture aims fo give the imporfant properties of bipartite
graphs. We will also define Eulerian circuits and Eulerian graphs: This
will be a generalization of the Kénigsberg bridges problem,

Characterizafion of biparfite graphs

The goal of this part is fo give an easy fest fo determine if a graph
is bipartite using the nofion of cycles: Konig theorem says that a graph
is bipartite it and only if it has no odd cycle,

Lemma

Every closed walk of odd length confains an odd cycle, This is called
an odd closed walk,

Proof

We prove it using strong induction on the length of the walk (i.e,
The number of edges).,

Base case: length 1, The walk is a loop, which is an odd cycle,
Induction hypothesis: If a walk has odd length at most n, then it
contains an odd cycle,

Induction step: Consider a closed walk of odd length n+1, 1f it has
no repeated verfex (except the first and last one), this is a cycle
of odd length, Ofherwise, assume verfex v is repeated, We can split
the walk info two closed walks starfing and ending at v, one of
even length, and one of odd length smaller than n. By induction
hypothesis, the latfer contains an odd cycle,




That lemma will be helptul for characterizing bipartite graphs, of
course, biparfife graphs can have even cycles, which starfs in one
independent set and ends there,

We can represent the independent
sets using colors,

Theorem (Konig, 1493s)
A graph is biparfite if and only if it has no odd cycle,

Proof

Notice fthaf a graph is biparfite if and only if all its components are
bipartife., So we do the proof on the components.

= We prove fhe confraposifive: it is has an odd cycle, it is not
bipartite.

Since every cycle must end af fhe verfex where it starfs,

it starts and ends in the same independent set, Since every
edge is going from one set fo the ofher, we alfernate
between the fwo sefs., At the end of the cycle, we cannot
close it, since we would need fo change the set of the
first vertex, Hence, if a connected graph is biparfite, it has
no odd cycle.

not possible

=We still need To prove that a connected graph without odd cycle is
biparfite, If the graph has only one verfex, it is biparfife,

Otherwise, start at verfex u, and color ifs neighbors with color blue,
Then, color the neighbors of the blue vertices in red, and repeat this
process by coloring the neighbors of the red verfices in blue, unfil

all vertices have been colored, 1 claim thal no verfex will change color
in That process; assume otherwise, that v is changing color, That would
mean fhat fhere exists a path of odd length from u fo v (fhe one
That colors v in blue), and a path of even length doing it (the one
that colors v in ved). The combination of these two paths is an odd
walk, and contains an odd cycle, which is prohibited by the hypothesis.,
Hence, the coloring is well defined, and the two colors represent
independent sefs, The graph is bipartite, []
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Technigue for checking whenever a graph is biparfife:
— I1f it is biparfite, prove it by finding fwo independent sets.
— If it is not biparfite, find an odd cycle,

Eulerian circuits

A graph is Eulerian if it has a closed trail containing all the edges.

The graph in the Kénigsberg bridges problem is not Eulerian, We saw
fhat the fact that some vertices had odd degree was a problem, since
we could never vefurn fo that verfex after leaving it tor the last fime,

Theorem

A graph is Eulerian if and only if it has af most one wnontrivial
component (i.e, component with edges), and if every vertex has even
degree.,

Proot

We first prove = by proving the confrapositive: if a graph has more than
one non—Trivial component, or it there is a verfex of odd degree,

Then the graph is not Eulerian,

1f a graph has at least two non—trivial components, fhere can't be
a walk going through all the edges, since they are in separate
components,

1f a graph has a verfex of odd degree, we are in fhe case of the
Konigsberg bridges: we can leave the verfex more often than we can
come back (or vice—versa), and Thus our trail cannot be closed.

= We need 1o prove that a connected graph with only vertices of even
degrees is Eulerian, We can ignore the isolafed verfices for this since
we are focusing on the edges. The following lemma is useful:



Lemma

1t every vertex of a graph has degree af least 2, then it
confains a cycle,

Proot

Let P be a maximal path in that graph., If it is a cycle,
we are done, Oftherwise, lef u be an endpoint of P,

Since if has degree at least 2, u has a neighbor v not

in P. Bul since P is maximal, thal means that v is already
in P, and the edge uv completes the cycle.

Proof of the theorem (continued)

We proceed by induction on the number of edges.

Base case: 0 edge, the graph is Eulerian,

Induction hypothesis: A graph with at most n edges is Eulerian,
Induction step: If all vertices have degree 2, the graph is a cycle
(by definifion) and it is Eulerian, Otherwise, let 6' be the graph
obtained by deleting a cycle, The lemma we just proved shows it is
always possible to delefe a cycle., By induction hypothesis, G' is
Eulerian, To build an Eulerian circuit in G, start by the cycle we just
deleted, and append the Eulerian circuit of G-, -

Proposition
Every graph with only vertices of even degree decomposes info cucles,

Eulerian circuits are closed trails that pass through all edges., A
similar property is being Hamiltonian: a Hamiltonian circuit is a circuit
That passes Though all verfices exactly once, A Hamiltonian graph is
a graph with a Hamiltonian circuit,

Reference: Douglas B. West, Introduction to graph theory, 2nd edifion, 2001, Section 1.2



