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Today's lecture aims to give the important properties of bipartite
graphs. We will also define Eulerian circuits and Eulerian graphs: this
will be a generalization of the Königsberg bridges problem. 

The goal of this part is to give an easy test to determine if a graph
is bipartite using the notion of cycles: König theorem says that a graph
is bipartite if and only if it has no odd cycle.

Lemma
Every closed walk of odd length contains an odd cycle. This is called 
an odd closed walk.

Proof
We prove it using strong induction on the length of the walk (i.e.
the number of edges).
Base case: length 1. The walk is a loop, which is an odd cycle.
Induction hypothesis: If a walk has odd length at most n, then it
contains an odd cycle.
Induction step: Consider a closed walk of odd length n+1. If it has
no repeated vertex (except the first and last one), this is a cycle
of odd length. Otherwise, assume vertex v is repeated. We can split
the walk into two closed walks starting and ending at v, one of
even length, and one of odd length smaller than n. By induction
hypothesis, the latter contains an odd cycle.
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That lemma will be helpful for characterizing bipartite graphs. Of 
course, bipartite graphs can have even cycles, which starts in one
independent set and ends there.

We can represent the independent
sets using colors.

Theorem (König, 1936)
A graph is bipartite if and only if it has no odd cycle.

not possible

Proof
Notice that a graph is bipartite if and only if all its components are
bipartite. So we do the proof on the components.
 ⇒ We prove the contrapositive: it is has an odd cycle, it is not
bipartite.
Since every cycle must end at the vertex where it starts,
it starts and ends in the same independent set. Since every
edge is going from one set to the other, we alternate
between the two sets. At the end of the cycle, we cannot
close it, since we would need to change the set of the
first vertex. Hence, if a connected graph is bipartite, it has
no odd cycle.

⇐ We still need to prove that a connected graph without odd cycle is
bipartite. If the graph has only one vertex, it is bipartite.
Otherwise, start at vertex u, and color its neighbors with color blue.
Then, color the neighbors of the blue vertices in red, and repeat this
process by coloring the neighbors of the red vertices in blue, until
all vertices have been colored. I claim that no vertex will change color
in that process; assume otherwise, that v is changing color. That would
mean that there exists a path of odd length from u to v (the one
that colors v in blue), and a path of even length doing it (the one
that colors v in red). The combination of these two paths is an odd
walk, and contains an odd cycle, which is prohibited by the hypothesis.
Hence, the coloring is well defined, and the two colors represent
independent sets. The graph is bipartite.
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odd cycle even cycle

⇐ We need to prove that a connected graph with only vertices of even
degrees is Eulerian. We can ignore the isolated vertices for this since
we are focusing on the edges. The following lemma is useful:

If a graph has a vertex of odd degree, we are in the case of the
Königsberg bridges: we can leave the vertex more often than we can
come back (or vice-versa), and thus our trail cannot be closed.

neither blue
nor red

Technique for checking whenever a graph is bipartite:
- If it is bipartite, prove it by finding two independent sets.
- If it is not bipartite, find an odd cycle.

Eulerian circuits

The graph in the Königsberg bridges problem is not Eulerian. We saw
that the fact that some vertices had odd degree was a problem, since
we could never return to that vertex after leaving it for the last time.

A graph is Eulerian if it has a closed trail containing all the edges.

If a graph has at least two non-trivial components, there can't be
a walk going through all the edges, since they are in separate
components.

Theorem
A graph is Eulerian if and only if it has at most one nontrivial
component (i.e. component with edges), and if every vertex has even
degree.

Proof
We first prove ⇒ by proving the contrapositive: if a graph has more than
one non-trivial component, or it there is a vertex of odd degree,
then the graph is not Eulerian.
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Lemma
If every vertex of a graph has degree at least 2, then it
contains a cycle.
Proof
Let P be a maximal path in that graph. If it is a cycle,
we are done. Otherwise, let u be an endpoint of P.
Since it has degree at least 2, u has a neighbor v not
in P. But since P is maximal, that means that v is already
in P, and the edge uv completes the cycle.

Proposition
Every graph with only vertices of even degree decomposes into cycles.

Eulerian circuits are closed trails that pass through all edges. A 
similar property is being Hamiltonian: a Hamiltonian circuit is a circuit
that passes though all vertices exactly once. A Hamiltonian graph is
a graph with a Hamiltonian circuit.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 1.2

Proof of the theorem (continued)
We proceed by induction on the number of edges.
Base case: 0 edge, the graph is Eulerian.
Induction hypothesis: A graph with at most n edges is Eulerian.
Induction step: If all vertices have degree 2, the graph is a cycle
(by definition) and it is Eulerian. Otherwise, let G' be the graph
obtained by deleting a cycle. The lemma we just proved shows it is
always possible to delete a cycle. By induction hypothesis, G' is
Eulerian. To build an Eulerian circuit in G, start by the cycle we just
deleted, and append the Eulerian circuit of G'.


