## Math 38 - Graph Theory

Today, we are doing a bit of combinatorics and will deduce some properties on the degrees, number of edges and number of vertices. We already defined the degree of a vertex in a loopless graph to be the number of edges incident to it.
For a general graph, define the degree $d_{G}(v)$ of the vertex $v$ to be the number of edges incident to it, with each loop counted twice.

The maximum degree of a vertex is denoted $\Delta(G)$ and the minumum degree is denoted $\delta(G)$.
A graph is said to be regular if $\delta(G)=\Delta(G)$.
The order of a graph $G=(V, E)$ is $|V|$, as the size of $G$ is $|E|$.
Example

- $K_{n}$ is a regular graph. Each vertex has degree $n-1$.
- $K_{m, n}$ is regular if and only if $m=n$. Then, the degree is always $n_{0}$
- A connected regular graph that has the same order and size is a cycle.
- Hypercubes are regular graphs. $\triangle$

Counting and bijection
Proposition (degree-sum formula)
If $G=(V, E)$ is a graph, then $\sum_{V \in V} d_{G}(v)=2|E|$.
Proof
For each edge, there are two endpoints (maybe equal). If the endpoints are different, this edge contributes for 1 in the degree of two different vertices. If the edge is a loop, it adds 2 to the degree of the vertex it is incident to. So either way, every edge accounts for 2 in the total degree count.

Corollary
In any graph $G=(V, E)$, the average degree is $2|E| /|V|$, and $\delta(G) \leq 2|E| /|V| \leq \Delta(G)$.

Every graph has an even number of vertices of odd degree.

## Corollary

A k-regular graph (i.e. a regular graph in which the degree of each vertex is $k$ ) has $\mathrm{k} \mid \mathrm{VI} / 2$ edges.

## Example: Hypercubes

The $n$-dimensional hypercube $H_{n}$ is defined recursively as:

- $H_{0}$ is the simple graph with one vertex
- $H_{n+1}^{0}$ is obtained by creating two copies of $H_{n}$ and appending an edge between corresponding vertices in the two copies.
$H_{0}$
$1-$
H,
$\mathrm{H}_{2}$
$\mathrm{H}_{3}$

$292^{2}$



## Proposition

$H_{n}$ is regular, as each vertex has degree $n_{0}$

## Proof

The proof can be done by regular induction.
The base case is $H_{0}$, and it has no edge.
Induction hypothesis: The $n$-dimensional hypercube $H_{n}$ is $n$-regular. Induction step: The $(n+1)$-dimensional hypercube is made of two copies of $H$, and we add an edge between every pair of similar vertices in the two copies. This way, we add exactly one to the degree of each vertex from $H_{n}$, and that degree is, by induction hypothesis $n$.

Proposition
If $k>0$, then a $k$-regular bipartite graph has the same number of vertices in its two independent sets.


Either not bipartite or not regular.

## Proof

since the graph is regular, all vertices have degree k. If there are $m$ edges in total, the sum of the degrees for all the vertices in one independent set is $m$, as every edge has exactly one endpoint in that set. Since the graph is k-regular, there are $m / k$ vertices in each set, so the order of both sets is the same.

Vertex-deletion and reconstruction conjecture
Is it possible to reconstruct a graph if you have only a list of its subgraphs? There is a long-standing, and still open conjecture saying it is, and so far we know it is almost always possible (that being understood in a probabilistic sense).

For a graph G, a vertex-deleted subgraph is an induced subgraph GOv obtained by deleting a single vertex $v$.
Example

has vertex-deleted subgraphs $4 x$


## Proposition

For a simple graph $G=(V, E)$ of order $n>2$ and size $m$,

$$
m=\frac{\sum_{v \in V} \# E(G-v)}{n-2}
$$

where $\# E(G-v)$ is the number of edges in the graph $G-v_{0}$

## Proof

We start with the summation, and we will prove the summation is equal to $m(n-2)$ :

$$
\sum_{v \in V} \# E(G-v)=\sum_{v \in V}|E|-d_{G}(v)=\sum_{v \in V}|E|-\sum_{v \in V} d_{G}(v)=m n-2 m
$$

Conjecture (Reconstruction Conjecture - Kelly, Slam, 1942)
If $G$ is a simple graph with at least three vertices, then $G$ is uniquely determined by the list of its vertex-deleted subgraphs (up to isomorphism).

Note that the hypothesis that $G$ has at least three vertices is important. Otherwise, we would find a counterexample with two vertices, since both simple graphs with two vertices have the same set of vertex-deleted subgraphs.

Example

has vertex-deleted subgraphs $4 x$

$1 x$


To reconstruct the graph, we know that 4 vertices have degree $\# E(G)-4$ and 1 has degree $\# E(G)-2$. Using the proposition, the number of edges in $G$ is $(2+4 \times 4) / 3=6$. So the list of degrees is $(2,2,2,2,4)$, and the graph is connected.
That means that the vertices are in two cycles. The length of the cycles can be found by looking at the subgraphs: there is at least one cycle of length 3. Since the graph is simple, both cycles have length 3 and the graph has to be isomorphic to the bootie.

Even though the conjecture is not proven, there are a number of cases that are known. Also, we can know some properties from the list of subgraphs; for example if the graph is connected.

Reference: Douglas B. West. Introduction to graph theory, and edition, 2001. Section 1.3

