
Math 38 - Graph Theory
Basic definitions and some problems
Can you draw these pictures, without ever crossing your path?

Can you draw this picture without ever lifting your pencil?

These are children problems, but also real-life problems in graph
theory, namely to know whether a graph is planar, or similar to 
know if a graph is Eulerian.

The first problem: Seven bridges of Königsberg (Euler, 1736)

Euler was wondering if one can go
from one place in the Königsberg
area, and back to that original 
place, by taking every bridge
exactly once.

(This is considered to be the first
solved problem in graph theory).

A modelisation of the problem:

This graph model the
areas of the city. There
is no need to know the 
exact location of each
bridge.

Remarks:
- Since we have to go back where we started, we do not care where
we start.
- Everytime we go from a location to another and back, we cross 2
bridges adjacent to that location.
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Since every island has an odd number of bridges, it is not possible
to visit all the islands by taking every bridge exactly once.
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Some definitions

Example

  Not simple graphs Simple graph

When uv (or equivalently) vu is an edge, we say the vertices u and
v are adjacent, or that they are neighbors.

Multiple edges are edges having the same pair of endpoints.
A simple graph is a graph having no loop nor multiple edges.

Subgraphs and containment

A graph G is made of a set of vertices (modeling some objects), and
a set of relations between two vertices, called the edges. We denote
G = (V,E) for the graph with vertices V and edges E. Any edge is a 
pair of two vertices called the endpoints.

We draw a graph (on paper or on the computer) by representing the
vertices as points, and we draw a curve between two vertices if they
are endpoints of the same edge. We can draw differently the same 
graph.

A loop is an edge whose endpoints are the same vertex.

A graph G'=(V',E') is a subgraph of G=(V,E) if V'⊆ V and E'⊆E.
We then say that G' is contained in G, denoted G'⊆G.



Some important problems in graph theory
1. Acquaintances
Do every set of six people contain at least three mutual acquaintances
or three mutual strangers?

Two graphs. The first one is a
5-vertex graph with no three mutual
strangers, nor three acquaintances.
The second one has six vertices, and
contain both three mutual strangers
and three acquaintances (a clique).

As a homework, you will have
to prove your solution to this
statement.

A clique
An independent set

Definition
A bipartite graph is the disjoint union of two independent sets.

A graph is connected if, for every pair of vertices, there is a path
(i.e. a sequence of edges) between them that belongs to the graph.
It is otherwise disconnected.

That question can be represented using a graph. Every person is a
vertex, and there is an edge between two persons if they know
each other. Here, we assume knowing each other is a mutual relation,
i.e. knowing a celebrity usually does not count.

Some useful vocabulary:
A clique in a graph is a set of pairwise adjacent vertices, i.e. a
complete subgraph.
An independent set is a subset of vertices with no adjacent pairs.

Example
Every graph with n vertices is a subgraph of the complete graph with
m≥n vertices.

2. Job assignments
If there are m jobs and n people, not all qualified for all the jobs, 
is there a way we can fill all the jobs?
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people
jobs

The edges are between a job and
a qualified person for that job.

(The jobs cannot all be filled in this example).

Vertices: Subjects
Edges: If someone takes both subjects,
i.e. eventual scheduling conflicts. 

Schedule:
1. History-English-PE
2. Chemistry
3. Math

Reference: Douglas B. West. Introduction to graph theory, 2nd
edition, 2001. Sections 1.1.1 and 1.1.2.
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3. Scheduling and avoiding conflicts
My high school used to have a very long exam sessions at the end of
the year, and there were still some conflicts. I wish the administrators
knew graph theory...

A coloring of a graph is a partition of
a set into independent sets. Scheduling
with no conflicts is equivalent to coloring.
If we want to use the minimum time, we 
should use as few colors as possible.

Chemistry
Math

English History

Physical
 Education



Math 38 - Graph Theory
Matrices for graph and Isomorphisms

We saw last class that two graphs are the same if they are differently,
as long as we are simply "moving the vertices". The goal of today's
lecture is to make this statement more formal. One tool we will use is
adjacency and incidence matrices. We will as well start classifying the
graphs. 

A(G) =




0 1 1 0
1 0 2 0
1 2 0 1
0 0 1 0


 M(G) =




1 1 0 0 0
1 0 1 1 0
0 1 1 1 1
0 0 0 0 1




Isomorphisms
So when are two graphs the same? We will answer this question using
the notion of a bijection. As a reminder, this an injective and 
surjective function, or a one-to-one correspondence.

The degree of a vertex (in a loopless graph) is the number of
edges incident to that vertex.

The graph on the left has the following adjacency and incidence
matrices:

The adjacency matrix is always a symmetric matrix.
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An isomorphism from a simple graph G to a simple graph H is a 
bijection f:V(G)→V(H) such that every edge uv of G is mapped
to the edge f(u)f(v) of H. We then say G and H are isomorphic,
denoted G ≅ H.

Let G=(V, E) be a graph without any loop (it does not have to be a
simple graph). We number the vertices from 1 to n and the edges
from 1 to m.

The adjacency matrix of G, written A(G), is the matrix whose (i,j)-
entry is the number of edges with endpoints the vertices i and j.
The incidence matrix of G, written M(G), is the n-by-m matrix whose
(i,j)-entry is 1 if vertex i is an endpoint of edge j, and otherwise 0.

Matrices: adjacency matrix and incidence matrix
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Example
The following graphs are isomorphic:

This is easily seen with the bijection that exchanges 1 and 3.

Example
The following graphs are not isomorphic. They both have six vertices,
all of degree 3, and nine edges, and they are both connected, but 
one is bipartite and the other is not. Since they don't have the same
properties, they are not isomorphic.

Example
All the isomorphism classes for graphs with 4 vertices are

Special graphs
There are some graphs that have special names, and that turns out to
be handy for whenever we want to use them or to classify them.

This is equivalent to asking that there exists a simultaneous
permutation of the rows and columns of the adjacency matrix of G 
that would yield the adjacency matrix of H.

No triangle appear in the first graph.

Remarks:
- Finding a bijection of the labels is the way to prove two graphs
are isomorphic. However, to prove they are not isomorphic, there are
many ways. For example, if the list of degrees is not the same, you
will never be able to find an isomorphism. Or if the number of edges
(or edges) do not correspond. Among others.
- The isomorphism relation is an equivalence relation, i.e. this is a
symmetric relation (G≅H iff H≅G), a transitive relation (G≅H and H≅J
imply G≅J) and a reflexive one (G≅G). That means that we can split
the graph into equivalence classes.



Complete graphs: Graphs with n vertices and   edges.

Complete bipartite graphs: Bipartite graphs with independent sets of
size s and r, with sr edges.

Paths: Connected graphs, with all the vertices of degree 2, except 
at most two who have degree 1.

Cycles: Paths with as many edges as vertices.

Example: C  is self-complementary.
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Note: K   is often called the claw.

The complement of the graph G is the graph that has the same
vertices and whose edges are all the edges that do not belong to G:

Example:

Example:

Example:

Example:

≅

A graph G is self-complementary if its complement G is isomorphic
to G.

Example: The cube decomposed into copies of K

A decomposition of a graph is a list of subgraphs in which every
edge appears exactly once.

Proposition
A graph G is self-complementary if and only if the complete graph
is a decomposition into two copies of G.
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The Petersen graph

The Petersen graph is a 10-vertices graph with 15 edges that is very
famous, as it is an example or a counter-example to many phenomena.

The Petersen graph is the graph of 2-element subsets of {1,2,3,4,5},
and there is an edge between 2 subsets if their intersection is empty.

Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 1.1

Some properties of the Petersen graph:
- Two non-adjacent vertices share exactly one 
neighbor.
- The graph has no triangle, but is not bipartite.
- The shortest cycle in the Petersen graph has length 5.
(The length of the shortest cycle in a graph is called
the girth of the graph.)



Math 38 - Graph Theory
Connection in graphs

Today's lecture aims to define the proper vocabulary to talk about 
trajectories and connectedness in graphs.

Nadia Lafrenière
    04/01/2022

Definitions

Example

Recall that a path is a graph whose vertices can be ordered without 
repetition (except maybe for the endpoints) in a sequence such that
two consecutive vertices are adjacent. A path is a u,v-path if it starts
at vertex u and ends at vertex v.

A walk is a list (v,e,v,...,e,v) of vertices and edges such that the edge
e has endpoints v  and v. A walk is a u,v-walk if its endpoints
(the first and last vertices of the walk) are u and v. If there is no
multiple edges, we can write the walk as (v,v,...,v).

A trail is a walk with no repeated edge. Similarly, a u,v-trail has 
endpoints u and v.

The points that are not endpoints are internal vertices.

The length of a walk, trail, path or cycle is its number of edges.
A walk or a trail is closed if its endpoints are the same.

(a,x,a,b,x,u,y,x,a) specifies a closed walk,
but not a trail (ax is used more than
once).

(a,b,x,u,y,x,a) specifies a closed trail.

The graph contains the five cycles (a,b,x,a), (u,y,x,u), (v,y,x,v),
(x,u,y,v,x) and (y,c,d,y).

The trail (x,u,y,c,d,y,v,x) is not an example of a cycle, since vertex
y is repeated (so it is not a path).



2Lemma
Every u,v-walk contains a u,v-path.

Proof
The proof can be done using the principle of strong induction, and 
we induce on the number of edges.

Base case: No edge, u=v is the only vertex in the graph. Only walk 
has length 0, and is therefore a path.

Induction hypothesis: Assume that, for a walk with k<n edges, there is 
always a path with the same endpoints.

Example: The u,v-walk from previous page.

Induction step: The walk has n edges. There are two cases: either
there is no repeated vertex or only the endpoint is repeated, and
then the walk is already a path, or there is a repeated vertex x.
In the latter case, we delete the edges between the first and last
occurrences of x, which leaves us with only one copy of x, and a 
u,v-walk with fewer than n edges. We can thus use the induction
hypothesis to conclude that there exists a u,v-path in the u,v-walk.

In the walk (a,x,a,b,x,u,y,x,a), we delete
what happens between the first two
occurrences of a, and get the closed walk
(a,b,x,u,y,x,a). Then we delete what happens
between the two occurrences of x, and get
the cycle (a,b,x,a), which is a path.

Connectedness, components and cuts

Recall that a graph is connected if and only if there exists a path 
between u and v for every pair of vertices {u,v}. 

A component of a graph G is a maximal connected subgraph.
A component is trivial if it has no edges; in this case, the unique
vertex is said to be an isolated vertex.



3Example
The following graph has 4 components, each of which are circled in
orange.

An isolated vertex

Proposition
Every graph with n vertices and k edges has at least n-k components.

Induction hypothesis: Assume that a graph with k-1 edges and n vertices
has at least n-k+1 components. 

Proof
The proof can be done by induction on k. The case of k>n is obvious,
since the number of components is always nonnegative.

Base case: If k=o, then each of the n vertices are isolated, and there
are n components.

Induction step: Let G=(V,E) with |V|=n and |E|=k. Remove the edge e
to get G-e. The component of G containing e can either be split into
two components by removing e, or stay a component. So G has either
the same number of components as G-e, or one fewer. By induction
hypothesis, G-e has at least n-k+1 components, so G has at least n-k.

In the last proof, we had to distinguish the cases where removing the
edge was creating a new component or not. An edge whose deletion
creates new component has a special name:

A cut-edge or cut-vertex of a graph is an edge or vertex whose
deletion increases the number of components. We write G-e or G-M
for the subgraph of G obtained by deleting an edge e or a set of
edges M; we write G-v and G-S for the graph obtained by deleting a
vertex v or a set of vertices S along with their incident edges.
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A subgraph obtained by deleting a subset of vertices and their incident
edges is an induced subgraph: we denote it G[T] if T=V\S and we
deleted the vertices in S.
Example

Vertices 3 and 5 are cut-vertices, and the edge
g is the only cut-edge.
The induced subgraph for the vertices 1, 2, 
3, 4 and 6:

Theorem
An edge is a cut-edge if and only it if belongs to no cycle.

Proof
Let e=uv be an edge in the graph G, and let H be the component
containing e. We can restrict the proof to H, since deleting e does not
influence the other components. We want to prove that H-e is
connected if and only if e is in a cycle in H.

If H-e is connected, then there exists in it a path P between u and v.
Hence, adding edge e=uv creates the cycle P+e.

If e is in a cycle c, c-e is a path P between v and u avoiding the
edge e. To show that H-e is still connected, we need to show that,
for every pair of vertices {x,y}, there is a path between x and y. Since
H is connected, there exists in H such a path. If that path does not
contain e, it is still in H-e. Otherwise, replace e by P, and remove an
edge from that path everytime it appears twice consecutively. 

The last theorem allows us to characterize cut-edges. Would such a
theorem be possible for cut-vertices? The following example proves that
asking for it to be outside a cycle is not a requirement for a cut-
vertex, since vertex 3 is a cut-vertex, and belongs to two cycles:
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Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 1.2

Removing vertex 3:

Two connected
components


