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Basic definitions and some problems 03/28/20272

Can you draw These pictures, without ever crossing your path?

WO

Can you draw This picture without ever lifting your pencil?

=

These are children problems, but also real=life problems in graph
theory, namely to know whether a graph is planar, or similar fo
know if a graph is Eulerian,

The first problem: Seven bridges of Konigsberg (Euler, 1736)

Euler was wondering if one can go
from one place in the Kénigsberg
area, and back 1o that original
place, by faking every bridge
exactly once,

(This is considered to be the first
solved problem in graph theory).

A modelisation of the problem:

This graph model the
areas of the city, There
is no need to know the
exact locafion ot each
bridge.

Remarks:

— Since we have To go back where we starfed, we do not care where
we startf,

— tveryfime we go from a location to another and back, we cross 2
bridges adjacent fo that location,



Since every island has an odd number of bridges, it is not possible @
fo visit all the islands by faking every bridge exactly once,

Some definitions

A graph G is made of a sef of verfices (modeling some objects), and
a sel of relations befween fwo vertices, called the edges. We denote
6 - (V,E) for the graph with vertices V and edges E. Any edge is a

pair of fwo vertices called the endpoints.,

We draw a graph (on paper or on the compuler) by representing the
vertices as points, and we draw a curve befween two vertices if they
are endpoints of the same edge. We can draw differently the same
graph.,

Example

A loop is an edge whose endpoints are the same vevTex.Q
Multiple edges are edges having the same pair of endpoints.
A simple graph is a graph having no loop nor multiple edges.

7. <>

Not simple graphs simple. grapk

When uv (or equivalently) vu is an edge, we say fThe verfices u and
v are adjacent, or that they are neighbors,

Subgraphs and containment

A graph G'=(V',E") is a subgraph of G-(V,E) it V'cV and E'cE,
We fhen say that 6' is contained in G, denoted G'ca.



Example ®
Every graph with n verfices is a subgraph of the complete graph with
m=n verTices,

A graph is connected if, for every pair of vertices, There is a path
(i.e. a sequence of edges) between them that belongs to the graph,
1T is ofherwise disconnected.,

Some important problems in graph theory

1, Acquaintances

Do every set of six people contain at least three mutual acquainfances
or three mufual strangers?

That guestion can be represented using a graph. Every person is a
vertex, and there is an edge befween fwo persons if they know
each ofher, Here, we assume knowing each ofher is a mutual relation,
l.e, knowing a celebrity usually does not count,

— Two graphs. The first one is a
G 4 . s—vertex graph with no three mutual
° strangers, nor three acquaintances.,
As a homework, you will have The second one has six verfices, and

fo prove your solufion to this contain both three mutual strangers
sTatement, and three acquaintances (a cligue).

Some useful vocabulary:

A cligue in a graph is a set of pairwise adjacent verfices, i.e, a
complefe subgraph,

An independent set is a subset of verfices with no adjacent pairs.,

a A cligue

@?? e An independent setf

2, Job assignments
1t there are m jobs and n people, not all qualified for all the jobs,
is there a way we can fill all The jobs?

Definition
A biparfife graph is the disjoint union of two independent sets.




veople The edges are between a job and ®

% jobs a gualified person for that job.
(=)

(The jobs cannot all be filled in this example),

3, Scheduling and avoiding conflicts
My high school used to have a very long exam sessions at the end of
the year, and there were still some conflicts, 1 wish the administrators

knew graph Theory..

Vertices: Subjects
Edges: If someone fakes both subjects,

SiS (@)
\ Pusicdl e, eventual scheduling conflicts,
//OEducahow

English ’ HisTory

ol — @ A coloring of a graph is a partition of
Cremistry a set info independent sets, Scheduling
with no conflicts is equivalent fo coloring,
Schedule: - |
| | 1t we want fo use the minimum time, we
1, History—English—PE .
| should use as few colors as possible,
2. Chemistry
3, Math

Reference: Douglas B, West, Infroduction fo graph theory, 2nd
edifion, 2001, Sections 1,1,1 and 1.1.2.
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We saw last class that fwo graphs are the same if they are differently,
as long as we are simply "moving the verfices'., The goal of foday's
lecture is to make this sfatement more formal, One tool we will use is
adjacency and incidence matrices. We will as well start classifying the
graphs.

Matrices: adjacency matrix and incidence matrix

Let 6-(V, E) be a graph without any loop (it does not have fo be a
simple graph). We number the vertices from 1 fo n and the edges
from 1 to m,

The adjacency mafrix of 6, written A(G), is the mafrix whose (i,j)—
enfry is the number of edges with endpoints the vertices i and j,

The incidence matrix ot G, writfen M(G), is the n—by—m matrix whose
(i,))—entry is 1 it verfex i is an endpoint of edge j, and otherwise o,

The adjacency matrix is always a symmedfric matfrix,
The graph on the left has the following adjacency and incidence
mafrices:

e, N 01 10 110 00
e A 101 10
3 g ) 1 0 2 0 _
e, A(G) = 1 2 0 1 M(G) = 01 1 11
0010 0 0 0 01
Ny €;

The degree of a vertex (in a loopless graph) is The number of
edges incident o that verfex,

Isomorphisms

So when are Two graphs the same? We will answer this question using
the notfion of a bijection, As a reminder, this an injective and
surjective function, or a one—to—one correspondence.,

An isomorphism from a simple graph 6 1o a simple graph H is a
bijection :V(6)-V(H) such that every edge uv of 6 is mapped
fo the edge f(u)f(v) of H., We then say G and H are isomorphic,
denoted 6 =H,




This is equivalent fo asking that there exists a simultaneous @
permufation of the rows and columns of the adjacency mafrix of 4
that would yield the adjacency mafrix of H,

Example
The following graphs are isomorphic:

1 3 1 3

2b<‘4 II/IN
This is easily seen with the bijection that exchanges 1 and 3.
Remarks:
— Finding a bijection of the labels is the way fo prove two graphs
are isomorphic, However, To prove They are not isomorphic, there are
many ways, For example, if the list of degrees is nof the same, uou
will never be able fo find an isomorphism, Or it the number of edges
(or edges) do not correspond. Among ofhers.,
— The isomorphism relation is an equivalence relation, i.e. this is a
symmetric velation (G6=H iff H=G), a fransifive rvelation (6=H and H=T
imply 6=7) and a reflexive one (6=6), That means that we can split
the graph into equivalence classes,

Example

The following graphs are not isomorphic., They both have six vertices,
all of degree 3, and nine edges, and They are both connected, but
one is biparfife and the other is not, Since they don't have the same
properties, they are not isomorphic,

%ﬂ 8 No friangle appear in the first graph.,

Example
All the isomorphism classes for graphs with 4 vertices are

II.\IX><7IN
(74 I ZAN B AN

Special graphs

There are some graphs thal have special names, and that turns out fo
be handy for whenever we want to use them or to classify them,



®

Complete graphs: Graphs with n verfices and (3)edges.

Example: . @
K. ’

Complete bipartite graphs: Biparfite graphs with independent sefs of
size s and v, with sr edges,

K., Example: y W

Paths: Connected graphs, with all the vertices ot degree 2, except
at most two who have degree 1,

P Example: ¢, \/\

Cycles: Paths with as many edges as vertices,

Example: (.
Cn

The complement of the graph 6 is the graph fhaf has the same

verfices and whose edges are all the edges that do not belong to 6:
\<\V\- E(e)= G

A graph G is selt—complementary if its complement G is isomorphic
fo 6.,

Example: Cg is self—complementary,

' %G

A decomposition of a graph is a list of subgraphs in which every
edge appears exactly once,
Example: The cube decomposed info copies of K,

Note: K5 is otten called the claw, E

Proposition
A graph G is self—complementary if and only if the complete graph
is a decomposifion info two copies of a.




The Pefersen graph ®
The Petfersen graph is a 10—vertices graph with 15 edges that is very
famous, as it is an example or a counfer—example fo many phenomena,

The Petersen graph is the graph of 2—element subsets of 1,2,3,4,5,
and there is an edge befween 2 subsets if fheir infersection is empty.

2 Some properties of the Petersen graph:

— Two non—adjacent verfices share exactly one

i5 44 neighbov ,
‘A' — The graph has no triangle, but is not biparfite,
P\ — The shorfest cycle in the Petersen graph has length s,
A (The length of the shortest cycle in a graph is called

the girth of the graph,)

reference: Douglas B. West, Introduction to graph theory, 2nd edition, 2001, Section 1.1
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Today's lecture aims fo define the proper vocabulary to talk about
Trajectories and connectedness in graphs,

Definifions

Recall that a path is a graph whose verfices can be ordered without
repefifion (except maybe for the endpoints) in a sequence such thaf
two consecufive verfices are adjacent. A path is a u,v—path if it starfs
at verfex u and ends af verfex v,

A walk is a list (yve,v,.,e,v) of vertices and edges such that the edge
e. has endpoints v and Ve A walk is a u,v—walk if its endpoints

(the first and \asT verfices of fhe walk) are u and v, If there is no
mulfiple edges, we can write the walk as (v,v,.,v).

A trail is a walk with no repeated edge. Similarly, a u,v—Trail has
endpoints u and v,

The points that are not endpoints are internal vertices.

The length of a walk, frail, path or cycle is its number of edges.
A walk or a frail is closed if ifs endpoints are the same,

Example .
: (a,x,a,b,x,u,4,%,a) specifies a closed walk,

. ¢ but not a trail (ax is used more than
Y ) (a,b,%x,u,4,%x,a) specifies a closed trail,

The graph confains the five cucles (a,b,x,a), (w,u,x,u), (v,4,%x,Vv),
(x,uy,v,x) and (y,c,d,y),

The trail (x,u,4,c,d,4,v,x) is not an example of a cucle, since verfex
4 is repeated (so if is not a path),



Lemma @
Every u,v—walk confains a u,v—path,

Proof
The proof can be done using the principle of strong induction, and

we induce on fThe number of edges.

Base case: No edge, u=v is the only vertex in the graph., Only walk
has length o, and is therefore a path,

Induction hypothesis: Assume that, for a walk with k<n edges, fhere is
always a path with the same endpoints,

Induction sfep: The walk has n edges. There are Two cases: either
there is no repeafed vertex or only the endpoint is repeated, and
then the walk is already a path, or there is a repeated vertex x.
In the latter case, we delefe the edges between the first and last
occurrences of x, which leaves us with only one copy of %, and a
u,v—walk with fewer than n edges. We can thus use fhe induction
hypothesis to conclude that fhere exists a u,v—path in the u,v—walk,

O
Example: The u,v—walk from previous page.
In the walk (a,%,a,b,%x,uu,x,a), we delefe
whal happens befween the first two
occurrences of a, and gef the closed walk
(a,b,x,u,4,%x,a). Then we delete what happens
between fhe two occurrences of x, and gef
the cycle (a,b,x,a), which is a path.,

Connectedness, components and cufs

Recall that a graph is connected if and only if fThere exists a path
between u and v for every pair of verfices wu,vi,

A component of a graph G is a maximal connected subgraph,
A component is trivial if it has no edges; in this case, the unigue
vertex is said 1o be an isolated verfex,




Example ©

The tollowing graph has 4 components, each of which are circled in
orange,

> A

Proposition
Every graph with n verfices and k edges has at least n—k components,

& An isolafed vertex

Proof

The proof can be done by induction on k., The case of k»n is obvious,
since the number of components is always nonnegative,

Base case: If k=0, then each of the n vertices are isolated, and there
are n components,

Induction hypothesis: Assume that a graph with k=1 edges and n verfices
has af least n—k+1 components,

Induction sfep: Let G=(V,E) with |VI-n and |EI-k, Remove the edge e
fo get G6—e., The component of G containing e can either be splif into
Two components by removing e, or stay a component, So G has either
the same number of components as G6—e, or one fewer, By induction
hypothesis, G—e has at least n—k+1 components, so G has at least n—k,

In the last proof, we had fo distinguish the cases where removing the
edge was creating a new component or not, An edge whose delefion
creates new component has a special name:

A cut—edge or cuf—verfex of a graph is an edge or verfex whose
delefion increases the number of components, We write 6—e or 6—M
for the subgraph of G obtained by deleting an edge e or a sef of
edges M; we write 6—v and 6—S for fhe graph obtained by deleting a
verfex v or a sef of verfices S along with their incident edges.




A subgraph obfained by delefing a subset of verfices and fheir imcidev@
edges is an induced subgraph: we denote it 61T if T-WV\S and we
deleted the verfices in S,

Ex‘amp\e 4 Vertices 3 and 5 are cut—vertices, and the edge
RS 2 . q is the only cut—edge.
7N . The induced subgraph for fthe vertices 1, 2,
: 509 3,4—8V]Ol61‘\3$aq
Theorem

An edge is a cut—edge if and only it if belongs fo no cycle.

Proof

LeT e-uv be an edge in the graph 6, and let H be the component
containing e, We can restrict the proof to H, since deleting e does not
influence the other components. We want to prove that H—e is
connected if and only if e is in a cycle in H,

1t e is in a cycle ¢, c—e is a path P between v and u avoiding the
edge e, To show that H—e is still connected, we need fo show that,
for every pair of verfices ix,yi, there is a path befween x and 4. Since
H is connecled, there exists in H such a path, If that path does not
confain e, it is still in H—e, Ofherwise, replace e by P, and remove an
edge from that path everyfime T appears twice consecutively,

1t H—e is connected, then fhere exists in it a path P between u and v,
Hence, adding edge e-uv creates the cycle P+e, O

The last theorem allows us to characterize cut—edges. Would such a
theorem be possible for cut—vertices? The following example proves that
asking for it To be outside a cycle is not a requirement for a cut—
verfex, since verfex 3 is a cuf—verfex, and belongs fo two cycles:



Removing vertex 3:
Y

‘ Two connected
O 0 components

T

reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001, Section 1.2



