
Math 38 - Graph Theory
Connection in graphs

Today's lecture aims to define the proper vocabulary to talk about 
trajectories and connectedness in graphs.
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Definitions

Example

Recall that a path is a graph whose vertices can be ordered without 
repetition (except maybe for the endpoints) in a sequence such that
two consecutive vertices are adjacent. A path is a u,v-path if it starts
at vertex u and ends at vertex v.

A walk is a list (v,e,v,...,e,v) of vertices and edges such that the edge
e has endpoints v  and v. A walk is a u,v-walk if its endpoints
(the first and last vertices of the walk) are u and v. If there is no
multiple edges, we can write the walk as (v,v,...,v).

A trail is a walk with no repeated edge. Similarly, a u,v-trail has 
endpoints u and v.

The points that are not endpoints are internal vertices.

The length of a walk, trail, path or cycle is its number of edges.
A walk or a trail is closed if its endpoints are the same.

(a,x,a,b,x,u,y,x,a) specifies a closed walk,
but not a trail (ax is used more than
once).

(a,b,x,u,y,x,a) specifies a closed trail.

The graph contains the five cycles (a,b,x,a), (u,y,x,u), (v,y,x,v),
(x,u,y,v,x) and (y,c,d,y).

The trail (x,u,y,c,d,y,v,x) is not an example of a cycle, since vertex
y is repeated (so it is not a path).



2Lemma
Every u,v-walk contains a u,v-path.

Proof
The proof can be done using the principle of strong induction, and 
we induce on the number of edges.

Base case: No edge, u=v is the only vertex in the graph. Only walk 
has length 0, and is therefore a path.

Induction hypothesis: Assume that, for a walk with k<n edges, there is 
always a path with the same endpoints.

Example: The u,v-walk from previous page.

Induction step: The walk has n edges. There are two cases: either
there is no repeated vertex or only the endpoint is repeated, and
then the walk is already a path, or there is a repeated vertex x.
In the latter case, we delete the edges between the first and last
occurrences of x, which leaves us with only one copy of x, and a 
u,v-walk with fewer than n edges. We can thus use the induction
hypothesis to conclude that there exists a u,v-path in the u,v-walk.

In the walk (a,x,a,b,x,u,y,x,a), we delete
what happens between the first two
occurrences of a, and get the closed walk
(a,b,x,u,y,x,a). Then we delete what happens
between the two occurrences of x, and get
the cycle (a,b,x,a), which is a path.

Connectedness, components and cuts

Recall that a graph is connected if and only if there exists a path 
between u and v for every pair of vertices {u,v}. 

A component of a graph G is a maximal connected subgraph.
A component is trivial if it has no edges; in this case, the unique
vertex is said to be an isolated vertex.



3Example
The following graph has 4 components, each of which are circled in
orange.

An isolated vertex

Proposition
Every graph with n vertices and k edges has at least n-k components.

Induction hypothesis: Assume that a graph with k-1 edges and n vertices
has at least n-k+1 components. 

Proof
The proof can be done by induction on k. The case of k>n is obvious,
since the number of components is always nonnegative.

Base case: If k=o, then each of the n vertices are isolated, and there
are n components.

Induction step: Let G=(V,E) with |V|=n and |E|=k. Remove the edge e
to get G-e. The component of G containing e can either be split into
two components by removing e, or stay a component. So G has either
the same number of components as G-e, or one fewer. By induction
hypothesis, G-e has at least n-k+1 components, so G has at least n-k.

In the last proof, we had to distinguish the cases where removing the
edge was creating a new component or not. An edge whose deletion
creates new component has a special name:

A cut-edge or cut-vertex of a graph is an edge or vertex whose
deletion increases the number of components. We write G-e or G-M
for the subgraph of G obtained by deleting an edge e or a set of
edges M; we write G-v and G-S for the graph obtained by deleting a
vertex v or a set of vertices S along with their incident edges.
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A subgraph obtained by deleting a subset of vertices and their incident
edges is an induced subgraph: we denote it G[T] if T=V\S and we
deleted the vertices in S.
Example

Vertices 3 and 5 are cut-vertices, and the edge
g is the only cut-edge.
The induced subgraph for the vertices 1, 2, 
3, 4 and 6:

Theorem
An edge is a cut-edge if and only it if belongs to no cycle.

Proof
Let e=uv be an edge in the graph G, and let H be the component
containing e. We can restrict the proof to H, since deleting e does not
influence the other components. We want to prove that H-e is
connected if and only if e is in a cycle in H.

If H-e is connected, then there exists in it a path P between u and v.
Hence, adding edge e=uv creates the cycle P+e.

If e is in a cycle c, c-e is a path P between v and u avoiding the
edge e. To show that H-e is still connected, we need to show that,
for every pair of vertices {x,y}, there is a path between x and y. Since
H is connected, there exists in H such a path. If that path does not
contain e, it is still in H-e. Otherwise, replace e by P, and remove an
edge from that path everytime it appears twice consecutively. 

The last theorem allows us to characterize cut-edges. Would such a
theorem be possible for cut-vertices? The following example proves that
asking for it to be outside a cycle is not a requirement for a cut-
vertex, since vertex 3 is a cut-vertex, and belongs to two cycles:
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Reference: Douglas B. West. Introduction to graph theory, 2nd edition, 2001. Section 1.2

Removing vertex 3:

Two connected
components


