Math 38 - Graph Theory Connection in graphs

Today's lecture aims to define the proper vocabulary to talk about trajectories and connectedness in graphs.

Definitions
Recall that a path is a graph whose vertices can be ordered without repetition (except maybe for the endpoints) in a sequence such that two consecutive vertices are adjacent. A path is a u, v-path if it starts at vertex u and ends at vertex v.

A walk is a list ($v_{0}, e_{,}, v_{1}, \ldots, e_{k}, v_{k}$) of vertices and edges such that the edge e_{i} has endpoints v_{i-1} and $v_{i} . A$ walk is a u, v-walk if its endpoints (the first and last vertices of the walk) are u and v. If there is no multiple edges, we can write the walk as $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$.

A trail is a walk with no repeated edge. Similarly, a u, v-trail has endpoints u and v.

The points that are not endpoints are internal vertices.
The length of a walk, trail, path or cycle is its number of edges. A walk or a trail is closed if its endpoints are the same.

Example $(a, x, a, b, x, u, y, x, a)$ specifies a closed walk,
 but not a trail (ax is used more than once).
(a,b,x,u,y,x,a) specifies a closed trail.

The graph contains the five cycles $(a, b, x, a),(u, y, x, u),(v, y, x, v)$, (x, u, y, v, x) and (y, c, d, y).

The trail (x, u, y, c, d, y, v, x) is not an example of a cycle, since vertex y is repeated (so it is not a path).

Every u,v-walk contains a u,v-path.

Proof

The proof can be done using the principle of strong induction, and we induce on the number of edges.

Base case: No edge, $u=v$ is the only vertex in the graph. Only walk has length 0, and is therefore a path.

Induction hypothesis: Assume that, for a walk with $k<n$ edges, there is always a path with the same endpoints.

Induction step: The walk has n edges. There are two cases: either there is no repeated vertex or only the endpoint is repeated, and then the walk is already a path, or there is a repeated vertex x_{0} In the latter case, we delete the edges between the first and last occurrences of x, which leaves us with only one copy of x, and a u, v-walk with fewer than n edges. We can thus use the induction hypothesis to conclude that there exists a u, v-path in the u, v-walk.

Example: The u, v-walk from previous page.

Connectedness, components and cuts
Recall that a graph is connected if and only if there exists a path between u and v for every pair of vertices $\{u, v\}$.

A component of a graph G is a maximal connected subgraph. A component is trivial if it has no edges; in this case, the unique vertex is said to be an isolated vertex.

The following graph has 4 components, each of which are circled in orange.

Proposition
Every graph with n vertices and k edges has at least $n-k$ components.

Proof

The proof can be done by induction on k. The case of $k>n$ is obvious, since the number of components is always nonnegative.

Base case: If $k=0$, then each of the n vertices are isolated, and there are n components.

Induction hypothesis: Assume that a graph with $k-1$ edges and n vertices has at least $n-k+1$ components.

Induction step: Let $G=(V, E)$ with $|V|=n$ and $|E|=k$. Remove the edge e to get $G-e$. The component of G containing e can either be split into two components by removing e, or stay a component. So G has either the same number of components as $G-e$, or one fewer. By induction hypothesis, $G-e$ has at least $n-k+1$ components, so G has at least $n-k$.

In the last proof, we had to distinguish the cases where removing the edge was creating a new component or not. An edge whose deletion creates new component has a special name:

A cut-edge or cut-vertex of a graph is an edge or vertex whose deletion increases the number of components. We write G-e or G-M for the subgraph of G obtained by deleting an edge e or a set of edges M; we write $G-v$ and $G-S$ for the graph obtained by deleting a vertex v or a set of vertices S along with their incident edges.

A subgraph obtained by deleting a subset of vertices and their incident edges is an induced subgraph: we denote it $G[T]$ if $T=V \backslash S$ and we deleted the vertices in S.

Example

Vertices 3 and 5 are cut-vertices, and the edge g is the only cut-edge.
The induced subgraph for the vertices 1, 2,
3, 4 and 6:

Theorem
$\overline{A n}$ edge is a cut-edge if and only it if belongs to no cycle.

Proof

Let $e=u v$ be an edge in the graph G, and let H be the component containing e. We can restrict the proof to H, since deleting e does not influence the other components. We want to prove that $\mathrm{H}-e$ is connected if and only if e is in a cycle in $H_{\text {. }}$

If e is in a cycle $c, c-e$ is a path P between v and u avoiding the edge e. To show that $H-e$ is still connected, we need to show that, for every pair of vertices $\{x, y\}$, there is a path between x and y. since H is connected, there exists in H such a path. If that path does not contain e, it is still in $H-e$. Otherwise, replace e by P, and remove an edge from that path everytime it appears twice consecutively.

If $\mathrm{H}-e$ is connected, then there exists in it a path P between u and $v_{\text {。 }}$ Hence, adding edge $e=u v$ creates the cycle $P+e$.

The last theorem allows us to characterize cut-edges. Would such a theorem be possible for cut-vertices? The following example proves that asking for it to be outside a cycle is not a requirement for a cutvertex, since vertex 3 is a cut-vertex, and belongs to two cycles:

Removing vertex 3:

Two connected
components

Reference: Douglas B. West. Introduction to graph theory, and edition, 2001. Section 1.2

