
Coloring 3-Colorable Graphs using SDPs1

• In this lecture we look at a graph coloring problem. The input is an undirected graph G = (V,E)
and the goal is to “color” every vertex from a “palette” of as few colors so that any two neighboring
vertices obtain different colors. More precisely, we want to find the smallest c and a map χ : V →
{1, 2, . . . , c} such that for any (u, v) ∈ E, we have χ(u) 6= χ(v). This smallest c is called the
chromatic number of the graph G.

Coloring is inherently related to the independent set question in a graph. Indeed, observe that if χ is
a valid coloring then all the vertices obtaining the same color must be an independent set. Therefore,
the graph coloring problem is simply the question of “packing” the graph into as few independent sets
as possible. In particular, if χ(G) of a graph is small, then the independent sets must be large. More
precisely, the graph must have an independent set of size ≥ n

χ(G) where n is the number of vertices.

• Finding a large independent set, and therefore the coloring problem, is a notoriously hard problem
to approximate. One therefore looks at special cases where one can design non-trivial algorithms.
One “simple” class of graphs where the independent set problem can be solved exactly are bi-partite
graphs. Now note that a bipartite graph is precisely graphs which have χ(G) = 2. Therefore, coloring
a graph G with χ(G) = 2 with two colors is easy, and so is finding the maximum independent set in
such graphs.

In this lecture we look at the “next hardest case”. Suppose someone promises that χ(G) = 3, can
we color it in 3 colors? In other words, given the promise that graph G is tripartite, can we find the
tri-partition? Turns out this problem is NP-hard. So, we ask what is the fewest number of colors one
can color such a promised graph in? Or, and this is the question we will focus on, what’s the largest
independent set we can find in such graphs.

Exercise: KK Find an independent set of size Ω(
√
n) in a 3-colorable graph, and then use it to

color a 3-colorable graph with O(
√
n) colors. To make it precise, given an arbitrary graph G,

either find an independent set of size Ω(
√
n) or prove that the graph is not 3-colorable.

• We further assume we have an upper bound on the maximum degree of G is d and our answer will
be in terms of this parameter. One can always think of d = n. Note that a simple greedy algorithm
returns an independent set of size Ω(n/d). More relevant to us, and something that we saw in the
randomized rounding lectures, one can obtain such sized independent set using randomized rounding
+ alteration method. It is good to remind oneself of that as we will use a similar method. However,
our randomized process will be guided by an SDP. To kill the suspense, we will be able to return an
independent set of size Ω̃(n/d1/3) where the˜ is hiding logarithmic factors. So, we would be able
to obtain an independent set of size roughly n2/3 instead of

√
n which was asked for in the above

exercise. In turn, we would be able to color the 3-colorable graph using Õ(d1/3) colors. And if
you have done the above exercise, then armed with the above result you would also be able to color
3-colorable graphs using Õ(n1/4) colors.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 4th Mar, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1

• An SDP for certifying 3-colorable graphs. We start by writing an SDP which would return a feasible
solution if G is 3-colorable. Contrapositively, if the SDP doesn’t return a feasible solution, we can
assert that the graph is not 3-colorable. Then, we use the SDP solution to find a large independent set.

The main observation is this. If G is 3-colorable, then there are three independent subsets A,B,C
of vertices which partition V . We can therefore embed the vertices on to a unit circle on the 2-
dimensional plane via φ : V → R2 such that for every edge (i, j) ∈ E we have that the angle between
φ(i) and φ(j) is precisely 120◦. See Figure 1 for an illustration.

120∘

Figure 1: The graph can be 3-colored using red (trellis), blue (checkered), and green (diagonal). The
embedding on to the unit circle is shown on the right.

In other words, ifG is 3-colorable, then ∃u1, . . . ,un ∈ R2 with ‖ui‖2 = 1 and u>i uj = −1
2 , ∀(i, j) ∈

E. Noting that the n× n matrix Xij = u>i uj is a PSD matrix, we get that if G is 3-colorable,

{X ∈ Rn×n : Xii = 1, Xij = −1

2
, ∀(i, j) ∈ E, X < 0} is non-empty (1)

This can be checked using an SDP. In other words, we can write an SDP to check if the RHS is empty
or not, and if it is empty, we can assert G is not 3-colorable. Next, we show what to do with the
feasible X < 0 that is returned by the SDP.

• SDP rounding. Given the PSD matrix X we can obtain n unit vectors v1, . . . ,vn ∈ Rd such that
v>i vj = −0.5 for all edges (i, j) ∈ E. If d were 2, then we would be done as that would imply all
the vectors are clumped at the three endpoints of an equilateral triangle, and all the coincident points
must be independent. However, d could be as large as n, and then it is not immediately clear how to
obtain a large independent set.

We first try to describe the idea qualitatively. As in the case of maximum cut, we have the vertices
spread on the surface of a high-dimensional orange. This time, we know that endpoints of any edge
are indeed “quite far” from each other. In particular, if we focus on the plane containing the center and
the endpoints of a single edge, then they form the 120 degree angle between them. Now suppose we
slice this orange using a random hyperplane and pick the vertices S on one side. First, in expectation,
we would pick half the vertices. Furthermore, for any fixed edge, the probability of picking both
endpoints, a la the Goemans-Williamson analysis, is 1/3. The issue, however, is that there could be
many edges (d many) incident to a vertex i, and so if we just slice through the middle, we would, with
high probability, i and lots of its on the same side. If we then tried “fixing” by deleting a vertex per
edge sampled, we may end up deleting almost the whole set S.

2

The fix is not to slice the orange through the center but through a “lesser circle”. Rethinking the
orange as our earth, instead of slicing through the equator, slice through the tropic of cancer (or, in
fact, much higher latitudes). This way, we would sample fewer than half the vertices. But as we show
below, the chances of getting both end points of an edge become much, much smaller. And indeed,
the correct “latitude” to slice at is determined by the parameter d and is figured so as to balance out
the alteration step and the sampling step. We now give the formal description.

1: procedure KMS ROUNDING(G, X solution to (1)):
2: Obtain vectors vi ∈ Rd such that Xij = v>i vj .
3: Sample a random unit gaussian vector g ∈ Rd.
4: . Sample gi ∈ N (0, 1) for 1 ≤ i ≤ d and g = 1√∑d

i=1 g
2
i

· (g1, . . . , gd)

5: Let I1 := {i ∈ V : v>i g ≥ c}. . Parameter c to be fixed later.
6: For any (i, j) ∈ E if both i and j are in I1, add them to D.
7: return I ← I1 \D.

• Analysis. It should be clear that I is an independent set by design. We prove the following theorem.

Theorem 1. If G has maximum degree d and c =
√

2
3 ln (d/2), then the expected size of I

returned by KMS ROUNDING is Ω
(

n
d1/3
√
ln d

)
.

Before we dive into this, we state some facts about Gaussian random variables.

Fact 1 (Gaussian Facts).

a. If g is a random unit gaussian vector in Rd and v is another vector in Rd, then G := v>g
satisfies G ∼ N (0, ‖v‖2), that is, it is a standard gaussian whose standard deviation is the
Euclidean length of v.

b. Let G ∼ N(0, 1) and define, for z ≥ 0, erf(z) := Pr[G ≥ z] = 1√
2π

∫∞
z e−

t2

2 dt. This is
just 1 minus the CDF of the Gaussian. Then, it can be shown for all t > 0,(

1

t
− 1

t3

)
e−t

2/2 ≤
√

2π · erf(t) ≤ 1

t
· e−t2/2 (2)

If G ∼ N(0, σ), then Pr[G ≥ z] = erf(z/σ).

The main observation is this: if (i, j) is an edge, then

‖vi + vj‖2 = ‖vi‖2 + ‖vj‖2 + 2v>i vj = 1

That is, the sum of these two vectors are also unit vectors. Now we have all the ingredients to
prove Theorem 1.

First we lower bound the size of |I1| as follows.

Exp[|I1|] =
∑
i∈V

Pr[i ∈ I1] =
∑
i∈V

Pr[v>i g︸︷︷︸
∼N (0,1)

≥ c] = n · erf(c)

3

where we used Fact 1(a) to say that v>i g is a standard gaussian, since vi is a unit vector.

Next we upper bound the size of |D| as follows.

Exp[|D|] = 2 ·
∑

(i,j)∈E

Pr[i ∈ I1 and j ∈ I1]

= 2 ·
∑

(i,j)∈E

Pr[v>i g ≥ c and v>j g ≥ c]

≤ 2 ·
∑

(i,j)∈E

Pr[(vi + vj)
> g︸ ︷︷ ︸

∼N (0,1)

≥ 2c]

≤ nd · erf(2c)

where the last inequality follows since the number of edges is ≤ nd/2, vi + vj is a unit vector,
and Fact 1(a).

Therefore,

Exp[|I|] = Exp[|I1|]−Exp[|D|] ≥ n · erf(c)− nd · erf(2c) ≥ n ·
(

1

2c
e−c

2/2 − d

2c
e−2c

2

)
where we have used Fact 1(b) for the last inequality.

Substituting c =
√

2
3 ln

(
d
2

)
, we get

Exp[|I|] ≥ n

4
√

2
3 ln

(
d
2

) · e− ln(d/2)
3 = Ω

(
n

d1/3
√

ln d

)

• To get the coloring result we use a standard peeling argument. We start by finding an independent set
of size as prescribed above. We delete this independent set and all edges incident. Note the maximum
degree upper bound d can only go down. We can keep doing so till all the vertices are picked in
some independent set. We leave it as a simple exercise to show that the number of independent sets is
Õ(d1/3).

Notes

Coloring 3-colorable graphs is an outstanding problem in approximation algorithms. The O(
√
n)-color

algorithm is from the paper [7] by Wigderson. This was improved in this paper [1] by Blum to Õ(n3/8)
colors. The algorithm described in these notes using SDPs is from the paper [4] by Karger, Motwani, and
Sudan (hence the name KMS), and when combined with Wigderson’s algorithm gives an Õ(n1/4)-coloring
algorithm. A chain of improvements, both combinatorial and using SDP methods followed, and the current
best algorithm is one from the paper [5] by Kawarabayashi and Thorup, and it uses Õ(n0.19996) colors.

On the hardness front, it is known that it is NP-hard to color 3-colorable graphs with 4 colors; this result
was first proved in the paper [6] by Khanna, Linial, and Safra, and then proved using elementary means in
the paper [3] by Guruswami and Khanna. This is the best NP-hardness known! If one assumes a variant of
the Unique Games Conjecture, then the paper [2] proved that it is NP-hard to color 3-colorable graphs with
O(1) colors.

4

References

[1] A. Blum. New approximation algorithms for graph coloring. Journal of the ACM, 41(3):470–516, 1994.

[2] I. Dinur, E. Mossel, and O. Regev. Conditional hardness for approximate coloring. SIAM Journal on
Computing (SICOMP), 39(3):843–873, 2009.

[3] V. Guruswami and S. Khanna. On the hardness of 4-coloring a 3-colorable graph. SIAM Journal on
Discrete Mathematics (SIDMA), 18(1):30–40, 2004.

[4] D. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by semidefinite programming.
Journal of the ACM, 45(2):246–265, 1998.

[5] K.-i. Kawarabayashi and M. Thorup. Coloring 3-colorable graphs with less than n1/5 colors. Journal
of the ACM, 64(1):1–23, 2017.

[6] S. Khanna, N. Linial, and S. Safra. On the hardness of approximating the chromatic number. Combina-
torica, 20(3):393–415, 2000.

[7] A. Wigderson. Improving the performance guarantee for approximate graph coloring. Journal of the
ACM, 30(4):729–735, 1983.

5

