
Bourgain’s Theorem via Padded Decompositions1

• Bourgain’s Theorem. In the last lecture, we saw how the generalized/non-uniform sparsest cut can be
solved if we could find metric embeddings of a general metric into L1 with low distortion. In particu-
lar, the following theorem of Bourgain (stylized to capture distortion with respect to S) immediately
implies a O(log k)-approximation for the general sparsest cut problem.

Theorem 1 (Bourgain’s Theorem, the Terminal Version). Given any metric space (V, d) and a set
S ⊆ V of size at most k, there is a mapping φ : V → RO(log2 k) such that with high probability,
we have that for any pair of vertices u and v, ||φ(u)−φ(v)||1 ≤ d(u, v) and for any pair u, v ∈ S,
d(u, v) ≤ O(log k)||φ(u)− φ(v)||1.

• In this note we give a sketch of a proof. In particular, we focus on the k = n2 case of all pairs. Next,
we only prove an “expectation” result rather than a “with high probability” result. More precisely,
we describe a randomized algorithm which produces a φ : V → Rh such that for any two points
u and v we have ‖φ(u)− φ(v)‖1 ≥ d(u, v) but Exp[‖φ(u)− φ(v)‖1] ≤ O(log n) · d(u, v). Note
that we have “flipped” the position of the O(log n) mainly for convenience’s sake. The “with high
probability” statement can be obtained by “repeating, averaging, and concatenating” and applying
standard deviation inequalities like the Chernoff bound. We leave this as an exercise.

We describe a proof which uses the random permutation idea that we saw in the randomized multicut
algorithm. The key definition is that of padded decompositions.

Definition 1. Given a metric d over V , a (β,∆)-padded decomposition of (V, d) is a distribution
over partitions Π := (V1, . . . , VT ) with the following two properties

a. The (weak) diameter of each Vi ∈ Π is at most ∆.
b. For any vertex u and radius r, PrΠ[B(u, r) is shattered by Π] ≤ β(u) · 4r

∆

Here β : V → R≥0 is a function mapping a non-negative real to u, and could depend on ∆. The
weak diameter of a subset S is maxu,v∈S d(u, v), the set B(u, r) := {v : d(u, v) ≤ r} is the
ball of radius r around u, and it’s shattered by a partition if at least two parts have non-trivial
intersection with it. Finally, a padded decomposition is said to be efficient if it can be efficiently
sampled from.

As noted above, β is allowed to be a function parametrized by ∆ which takes a vertex u as input. For
the time being let’s keep β to be fixed.

• Padded Decompositions and Embedding into `1. We now describe how padded decompositions
imply embeddings in a fairly natural way. Let D := maxu,v∈V d(u, v). Our (randomized) mapping φ
will be a concatenation of these dlog2De different φt’s, with a final scaling step at the end.
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1: procedure RANDOMIZED EMBEDDING(V, d):
2: for t = 0 to dlog2De do: . D := maxu,v∈V d(u, v).
3: Sample Πt := (V1, . . . , Vdt) from a (βt, 2

t)-padded decomposition distribution. .
βt’s will be defined later

4: Define φt(u) as a dt-dimensional vector corresponding to the different parts:

φt(u)[i] =

{
2t if u ∈ Vi
0 otherwise

5: . If u and v are in different parts of Πt, then ‖φt(u)− φt(v)‖1 = 2t+1, else it is 0

6: Let φ be a concatenation of these dlog2De different φt’s.

Claim 1. For any two points u and v and any t, we have Exp[||φt(u) − φt(v)||1] ≤ βt(u) ·
8d(u, v). Furthermore, if t < log2 d(u, v), then ||φt(u)− φt(v)||1 = 2t+1 with probability 1.

Proof. u and v are in different parts of Πt is equivalent to the event that the ball B(u, d(u, v)) is
shattered by Πt. By the definition of padded decompositions, the probability of this is at most
4βt(u)d(u, v)/2t. Therefore, Exp[||φt(u) − φt(v)||1] ≤ 4βt(u)

2t · 2t+1, and thus the first assertion
of the claim follows. Furthermore, if t < log2 d(u, v), then from the fact that the diameter of every
part is ≤ 2t one gets that u and v cannot be in the same part. And so, ||φt(u)− φt(v)||1 = 2t+1 with
probability 1.

By the second assertion in Claim 1, we get

For any u, v, ||φ(u)− φ(v)||1 ≥
blog2 d(u,v)c∑

t=0

2t+1 ≥ d(u, v) (1)

By the first assertion in Claim 1, we get

For any u, v, Exp[||φ(u)− φ(v)||1] ≤ 8d(u, v)

log2D∑
t=0

βt(u) (2)

In sum, we get an embedding of d into `1 with distortion depending on the β-parameter of the padded
decomposition. In the next bullet point, we show how to obtain a padded decomposition with the
following parameters.

Theorem 2. For any metric space (V, d) and parameter t, there exists a (βt, 2
t) padded decomp-

isition with

βt(u) = 2 ln

(
|B(u, 2t)|
|B(u, 2t−3)|

)
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If we substitute this in (2), we get

For any u, v, Exp[||φ(u)− φ(v)||1] ≤ 8d(u, v)

log2D∑
t=0

ln

(
|B(u, 2t)|
|B(u, 2t−3)|

)
Now note that the summations telescope to ≤ 24 lnn · d(u, v). And this completes the proof sketch
of Theorem 1.

• Padded Decomposition Distributions. We now describe a randomized algorithm which generates
samples from a (βt(u), 2t)-padded decomposition.

1: procedure PADDED DECOMPOSTION(t):. Return a padded decomposition as asserted in The-
orem 2

2: Sample a random permutation σ of the points in V .
3: Sample R ∈ [2t−2, 2t−1] uniformly at random.
4: Define Vi := {v : d(i, v) ≤ R} \

⋃
j≤σi Vj .

It is clear that the diameter of every Vi is at most 2R ≤ 2t. Let B denote the ball B(u, r). First,
observe that if r > 2t−3, then Theorem 2 holds trivially since the RHS has 8·2t

r > 1 in the RHS.
Therefore, we may assume r ≤ 2t−3.

Let us consider a vertex i such that Vi is the first in σ-order to shatter B(u, r). For this to occur,
we must have d(u, i) − r ≤ R and R ≤ d(u, i) + r: the former since Vi intersects B(u, r) and
the latter since it doesn’t contain all of it. Since R ∈ [2t−2, 2t−1], we get that i must lie in the
set X := B(u, 2t−1 + r) \ B(u, 2t−2 − r). We have the notation B(u, θ) = {u} in case θ is
a negative number. Furthermore, in the random permutation σ, i must appear before any vertex
j ∈ B(u, 2t−2− r) otherwise i won’t be the first vertex to shatter the ball (either someone else would
have shattered, or j would’ve gobbled the whole ball B(u, r).) Finally, note that if i can non-trivially
intersect B, then any j ∈ X with d(j, B) ≤ d(i, B) can non-trivially intersect B. Therefore, if i were
the first in σ to shatter B, it better be that all j ∈ X with d(j,X) ≤ d(i,X) come after i in σ.

Pr[B(u, r) shattered] = Pr
R,σ

[∃i ∈ X : Vi is the first in σ to shatter B(u, r)]

≤
∑
i∈X

Pr
R,σ

[Vi is the first in σ to shatter B(u, r)]

≤
∑
i∈X

Pr
R,σ

[R ∈ [d(u, i)± r] and Ei]

where Ei is the event that all vertices j ∈ B(u, 2t−1 + r) ≤σ i satisfy (a) j /∈ B(u, 2t−2 − r) and (b)
d(j, B) > d(i, B). As explained above, if Ei doesn’t occur then i cannot be the first vertex to shatter
B. Note that Ei is independent of R ∈ [d(u, i)± r]. And therefore,

Pr[B(u, r) shattered] ≤
∑
i∈X

Pr
R

[R ∈ [d(u, i)± r] ·Pr[Ei] ≤
4r

2t
·
∑
i∈X

Pr[Ei]
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If we sort the points in B(u, 2t−1 + r) in increasing order of distance from u, then Pr[Ei] is 1
i , and

i ranges precisely from |B(u, 2t−2 − r)| to |B(u, 2t+1 + r)| since that is where the points in X lie.
This harmonic sum is indeed bounded by

ln

(
|B(u, 2t−1 + r)|
|B(u, 2t−2 − r)|

)
≤ ln

(
|B(u, 2t)|
|B(u, 2t−3)|

)
since r ≥ 2t−3. This ends the proof of Theorem 2.

Notes

Bourgain’s theorem on metric embeddings is from the paper [2]. The terminal version as stated in Theorem 1
is first stated in the paper [5] by Linial, London, and Rabinovich, and also in the paper [1] by Aumann and
Rabani. The proof above is inspired from the paper [4] by Fakcharoenphol, Rao, and Talwar, which itself is
inspired from the paper [3] by Calinescu, Karloff, and Rabani.
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