Two Logarithmic Approximation Algorithms for Multicut ${ }^{1}$

- In this lecture we consider the multicut problem which generalizes the multiway cut problem. As usual, we are given an undirected graph $G=(V, E)$ with non-negative costs $c(e)$ on edges. We are also given k pairs of vertices $\left\{s_{i}, t_{i}\right\}_{i=1, \ldots, k}$. The objective is to find a subset $F \subseteq E$ of minimum cost such that in $G \backslash F, s_{i}$ is disconnected from t_{i}. Note that s_{i} could remain connected to t_{j}. We describe two $O(\log k)$-approximation algorithms for this problem. They are both based on the same distance-based LP relaxation.

$$
\begin{array}{lr}
\mathrm{Ip}:=\min & \\
\sum_{e \in E} c(e) x_{e} & \\
d_{u v} \leq x_{e}, & \forall e \in E, e=(u, v) \\
d_{u w} \leq d_{u v}+d_{v w}, & \forall i \in F, \forall\{u, v, w\} \subseteq V \\
d_{v v}=0, & \forall v \in V \tag{4}\\
d_{s_{i} t_{i}} \geq 1, & \forall 1 \leq i \leq k
\end{array}
$$

- Randomized Rounding Algorithm. The first rounding algorithm we see is a generalization of the multiway cut algorithm. We select a random radius $r \in(0,0.5)$ uniformly at random. Then, we wish to go over each terminal s_{i} and "carve out" the region of radius r around S_{i}. The twist in this algorithm is this: go over the terminals also randomly.

```
procedure Randomized \(\operatorname{Multicut}\left(G=(V, E), c(e) \geq 0\right.\) on edges, \(\left.\left\{s_{i}, t_{i}\right\}_{i=1, \ldots, k}\right)\) :
    Solve (Multicut LP) to obtain \(x_{e}\) 's and \(d_{u v}\) 's.
    Randomly sample \(r \in(0,0.5)\) uniformly.
    Randomly sample \(\sigma\), a permutation of \(\{1, \ldots, k\}\).
    Let \(S_{i}:=\left\{v: d_{s_{i} v} \leq r\right\}\) and let \(E\left[S_{i}\right]:=\left\{(u, v): u, v \in S_{i}\right\}\).
    For \(1 \leq i \leq k\) : add \(\partial S_{\sigma(i)} \backslash \bigcup_{j<i} E\left[S_{\sigma(j)}\right]\) to \(F\).
    return \(F\).
```

- Analysis. First let us observe F is a valid multicut.

Claim 1. F separates all s_{i}, t_{i} pairs.

Proof. By design, observe that for any i, the subset S_{i} doesn’t contain both s_{j} and t_{j} for any j. Now, note that since $\partial S_{\sigma(i)} \backslash \bigcup_{j<i} E\left[S_{\sigma(j)}\right]$ is added to F, in $G \backslash F$ the vertex $s_{\sigma(i)}$ is disconnected from all vertices outside $S_{\sigma(i)}$, except maybe those in $S_{\sigma(j)}: j<i$ which contained the vertex $s_{\sigma(i)}$. By the observation above, such $S_{\sigma(j)}$'s don't contain $t_{\sigma(i)}$. Therefore, $s_{\sigma(i)}$ is disconnected from $t_{\sigma(i)}$.

[^0]Theorem 1. The expected cost of the edges F returned by Randomized Multicut is $\leq 2 H_{k} \mid \mathrm{p}$ where H_{k} is the k th Harmonic number.

Proof. Fix an edge (u, v). The proof of the theorem follows if we prove $\operatorname{Pr}[(u, v) \in F] \leq 2 H_{k} \cdot d_{u v}$. Note that the probability is now both over our choice of r and the random permutation of the terminals.
Define $\mathcal{E}_{i}(u, v)$ to be the event that exactly one of u or v lies in S_{i}. That is, $\min \left(d_{s_{i} u}, d_{s_{i} v}\right) \leq r<$ $\max \left(d_{s_{i} u}, d_{s_{i} v}\right)$. Define $\mathcal{E}_{i}^{\prime}(u, v)$ to be the event that both u and v lie in S_{i}, that is $r<\min \left(d_{s_{i} u}, d_{s_{i} v}\right)$. Now, note that the edge (u, v) appears in the solution F if and only if there is some i such that \mathcal{E}_{i} occurs and for all $j<i, \mathcal{E}_{j}^{\prime}$ doesn't occur. That is,

$$
\begin{equation*}
\operatorname{Pr}[(u, v) \in F]=\underset{\sigma, r}{\operatorname{Pr}}\left[\exists i: \mathcal{E}_{\sigma(i)}(u, v) \text { and } \bigwedge_{j<i} \mathcal{E}_{\sigma(j)}^{\prime}(u, v)\right] \tag{5}
\end{equation*}
$$

Fix an i between 1 and k. Without loss of generality, assume $d_{s_{\sigma(i)} u} \leq d_{S_{\sigma(i)} v}$. Note that $\bigwedge_{j<i} \mathcal{E}_{\sigma(j)}^{\prime}(u, v)$ occurs only if $r<d_{s_{\sigma(j)} v}$ for all $j<i$. But $\mathcal{E}_{\sigma(i)}(u, v)$ occurs only if $r \geq d\left(s_{\sigma(i)}, u\right)$. So, we can upper bound the probability in the RHS above as

$$
\underset{\sigma, r}{\operatorname{Pr}}\left[\mathcal{E}_{\sigma(i)}(u, v) \text { and } \bigwedge_{j:<i} \mathcal{E}_{\sigma(j)}^{\prime}(u, v)\right] \leq \underset{\sigma, r}{\operatorname{Pr}}\left[r \in\left[d_{s_{\sigma(i)} u}, d_{s_{\sigma(i)} v}\right] \text { and } \bigwedge_{j<i}\left\{d_{s_{\sigma(i)} u}<d_{s_{\sigma(j)} u}\right\}\right]
$$

Note that the two events in the RHS above are independent: the first depends only on r, the second depends only on σ, and they were chosen independently. So, by union bound we get that the RHS of (5) is at most

$$
\sum_{i=1}^{k} \underbrace{\operatorname{Pr}\left[r \in\left[d_{s_{\sigma(i)} u}, d_{s_{\sigma(i) v}}\right]\right.}_{\text {call this } \pi_{1}(i)} \cdot \underbrace{\operatorname{Pr}\left[\bigwedge_{\sigma<i}\left\{d_{s_{\sigma(i)} u}<d_{s_{\sigma(j)} u}\right\}\right]}_{\text {call this } \pi_{2}(i)}
$$

We know $\pi_{1}(i)=\operatorname{Pr}_{r}\left[r \in\left[d_{s_{\sigma(i)} u}, d_{s_{\sigma(i)} v}\right] \leq 2 d_{u v} \leq 2 x_{e}\right.$. This is similar to the mincut argument; r is chosen randomly from an interval of length 0.5 and the length of $\left[d_{s_{\sigma(i)} u}, d_{s_{\sigma(i)} v}\right]$, by (2) is at most $d_{u v} \leq x_{e}$.
To evaluate $\pi_{2}(i)$, consider the k distances $d_{s_{i} u}$ from u to each s_{i}. What π_{2} is asking is to figure out the probability that in a random permutation of these k distances, the i th distance is the minimum among the first i. This is precisely $1 / i$. Therefore, the probability in the RHS of (5) is at most $\sum_{i=1}^{k} \frac{2 x_{e}}{i}=2 H_{k} \cdot x_{e}$. This completes the proof.

- A Region Growing Algorithm. We now describe another algorithm for the multicut problem. This algorithm uses a technique called region growing which will be useful for the next cut-problem we look at. It also has applications in other related problems.

We start with a couple of definitions. Let's fix a solution to (Multicut LP), and a parameter $r \in[0,0.5)$. For a subset $U \subseteq V$, define $S_{i}(r ; U):=\left\{u \in U: d_{s_{i} u} \leq r\right\}$. Define $\partial S_{i}(r ; U):=\{(u, v) \in E$:
$\left.u \in S_{i}(r ; U), v \in U \backslash S_{i}(r)\right\}$, and define $E\left[S_{i}(r ; U)\right]=\left\{(u, v) \in E: u, v \in S_{i}(r ; U)\right\}$. These definitions are similar to the ones used above, except we pass on an extra parameter U.
Next, define the "volume" of a ball of radius r around the center s_{i}.

$$
\operatorname{Vol}_{i}(r ; U):=\frac{\mathrm{p}}{k}+\sum_{(u, v) \in E\left[S_{i}(r ; U)\right]} c(u, v) d_{u v}+\sum_{(u, v) \in \partial S_{i}(r ; U)} c(u, v) \cdot\left(r-d_{s_{i} u}\right) \quad \text { (LP volume) }
$$

It's best to think of this volume as the set $S_{i}(r ; U)$'s contribution to the LP objective. There are three parts above. The first, Ip/k is an initialization which is kept for technical reasons. The second summation is the contribution to the LP objective due to edges complete present inside $S_{i}(r ; U)$. The third is considering edges in $\partial S_{i}(r ; U)$ and sharing some of the LP contribution on these edges and attributing it to i. Note that for all such edges, $r-d_{s_{i} u} \leq d_{s_{i} v}-d_{s_{i} u} \leq d_{u v}$ where the first inequality follows from the fact that $v \in U \backslash S_{i}(r)$, and the second is triangle inequality.
The following observation follows from the definition.
Claim 2. Fix any $r \in(0,0.5)$ and any i and any $U \subseteq V$. The set $S_{i}(r ; U)$ cannot contain s_{j} and t_{j} for any $1 \leq j \leq k$.

Proof. For any two vertices $u, v \in S_{i}(r ; U)$, triangle inequality dictates $d_{u v} \leq d_{u s_{i}}+d_{v s_{i}} \leq 2 r<1$. Since $d_{s j t_{j}} \geq 1$, they both can't be in the same $S_{i}(r ; U)$.

This suggests the following algorithm. Figure out certain radii r_{i} 's and peel out the "region of radius r " around the terminal and delete. The boundaries of these "chunks" form a valid multicut.

```
procedure Region Growing Multicut \(\left(G=(V, E), c(e) \geq 0,\left\{s_{i}, t_{i}\right\}_{i=1, \ldots, k}\right)\) :
    Solve (Multicut LP) to obtain \(x_{e}\) 's and \(d_{u v}\) 's.
    \(U \leftarrow V ; \mathcal{B} \leftarrow \emptyset ; I \leftarrow \emptyset\). \(\triangleright U\) is the set of alive vertices; \(\mathcal{B}\) is collection of balls.
    for \(1 \leq i \leq k\) do:
        If \(s_{i} \in S_{j}\left(r_{j} ; U\right)\) for \(j<i\), skip this for loop.
        Otherwise, find \(r_{i} \in[0,0.5)\) which minimizes \(\frac{\sum_{e \in \partial S_{i}\left(r_{i} ; U\right)} c(e)}{\operatorname{Vol}_{1}\left(r_{i} ; U\right)}\).
        \(\triangleright\) There are at most \(n\) different \(r\) 's such that \(S_{i}(r ; U)\) are distinct
        \(U \leftarrow U \backslash S_{i}\left(r_{i} ; U\right)\)
        Add \(B_{i}:=S_{i}\left(r_{i} ; U\right)\) to \(\mathcal{B}\).
    return \(F \leftarrow \bigcup_{B \in \mathcal{B}} \partial B\).
```

- Analysis.

Theorem 2. Region Growing Multicut returns a valid multicut F with $\operatorname{cost} \sum_{e \in F} c(e) \leq$ $4 \ln (k+1)$ lp.

Observe, by definition, the sets $B \in \mathcal{B}$ are disjoint sets. Furthermore, no $B \in \mathcal{B}$ contains both s_{j} and t_{j} for any $1 \leq j \leq k$; this follows form Claim 2. Therefore, F is a valid multicut. Furthermore, each $B \in \mathcal{B}$ is $S_{i}\left(r_{i} ; U_{i}\right)$ for some subset $U_{i} \subseteq V$ which was the alive subset of vertices when this ball was being added. Let $I \subseteq[k]$ be the i 's present in this enumeration; these are the s_{i} 's not "gobbled" by other $S_{j}\left(r_{j} ; U\right)$'s.

Claim 3. $\sum_{i \in I} \operatorname{Vol}_{i}\left(r_{i} ; U_{i}\right) \leq 21 \mathrm{p}$.

Proof. Note that the sum of the volumes is at most

$$
\mathrm{Ip}+\sum_{(u, v) \in \cup_{i \in I} E\left[S_{i}\left(r_{i} ; U_{i}\right)\right]} c(u, v) d_{u v}+\sum_{i \in I} \sum_{(u, v) \in \partial S_{i}\left(r_{i} ; U_{i}\right)} c(u, v) d(u, v)
$$

Now note that any edge $(u, v) \in E$ appears in at most one $E\left[S_{i}\left(r_{i} ; U_{i}\right)\right]$ or $\partial S_{i}\left(r_{i} ; U_{i}\right)$: it is the first i for which one of the end points enters $S_{i}\left(r_{i} ; U_{i}\right)$. Therefore, the last two summations add up to at $\operatorname{most} \sum_{(u, v) \in E} c(u, v) d_{u v} \leq \sum_{e \in E} c_{e} x_{e}=\mathrm{lp}$.

The heart of the analysis is in the following lemma.
Lemma 1. (Region growing lemma) Fix any subset $U \subseteq V$ and any $s_{i} \in U$. There exists a $r_{i} \in[0,1 / 2)$ such that

$$
\sum_{(u, v) \in \partial S_{i}(r ; U)} c(u, v) \leq 2 \ln (k+1) \cdot \operatorname{Vol}_{i}\left(r_{i} ; U\right)
$$

Proof. As defined, note that $\mathrm{Vol}_{i}(r ; U)$ is a continuous, piece-wise linear function of r, and the crucial observation is that

$$
\frac{d \mathrm{Vol}_{i}(r ; U)}{d r}=\sum_{(u, v) \in \partial S_{i}(r ; U)} c(u, v)
$$

For the sake of contradiction, assume that the lemma's assertion is false. Then, we get the partial differential inequality

$$
\forall r \in[0,0.5), \quad \frac{d \mathrm{Vol}_{i}(r ; U)}{d r}>2 \ln (2 k) \cdot \mathrm{Vol}_{i}(r ; U) \Rightarrow \frac{d \mathrm{Vol}_{i}(r ; U)}{\mathrm{Vol}_{i}(r ; U)}>2 \ln (k+1) \cdot d r
$$

Therefore, if we integrate with r going from 0 to 0.5 ,

$$
\int_{\mathrm{Vol}_{i}(0)}^{\mathrm{Vol}_{i}(0.5)} \frac{d \mathrm{Vol}_{i}(r)}{\operatorname{Vol}(r)}>2 \ln (2 k) \int_{0}^{1 / 2} d r
$$

The LHS integrates to $\ln \left(\frac{\mathrm{Vol}_{i}(0.5 ; U)}{\operatorname{Vol}_{i}(0 ; U)}\right)$. By design, $\mathrm{Vol}_{i}(0 ; U)=\operatorname{lp} / k$. And, $\mathrm{Vol}_{i}(0.5) \leq \operatorname{lp}\left(1+\frac{1}{k}\right)$. Therefore, the LHS is at most $\ln (k+1)$. The RHS, however, integrates to $\ln (k+1)$, giving the desired contradiction.

In the algorithm, we pick r_{i} 's which minimize the ration of $c\left(\partial S_{i}\left(r_{i} ; U\right)\right) / \mathrm{Vol}_{i}\left(r_{i} ; U\right)$, and so this ratio is at most $2 \ln (2 k)$. Therefore, the cost of the edges deleted is at most

$$
c(F)=\sum_{B \in \mathcal{B}} c(\partial B)=\sum_{i \in I} c\left(\partial S_{i}\left(r_{i} ; U_{i}\right)\right) \leq 2 \ln (k+1) \cdot \sum_{i \in I} \operatorname{Vol}_{i}\left(r_{i} ; U_{i}\right) \underbrace{\leq}_{\text {Claim } 3} 4 \ln (k+1) \operatorname{lp}
$$

completing the proof of Theorem 2.

Notes

The region growing algorithm is from the paper [4] by Garg, Vazirani, and Yannakakis and was the first $O(\log k)$-approximation for the multicut problem. The technique of region growing itself is inspried by the seminal paper [5] by Leighton and Rao on the sparsest cut problem which we will discuss in a subsequent lecture. The randomized rounding algorithm is from the paper [2] by Calinescu, Karloff, and Rabani which followed their paper [1] on the multiway cut problem. On the other hand, it is possible there may not be any constant factor approximations for the multicut problem: the paper [3] by Chawla, Krauthgamer, Kumar, Rabani, and Sivakumar shows that it is UGC-hard to obtain any constant factor approximation.

References

[1] G. Calinescu, H. Karloff, and Y. Rabani. An Improved Approximation Algorithm for Multiway Cut. J. Comput. Syst. Sci., 60(3):564-574, 2000.
[2] G. Calinescu, H. Karloff, and Y. Rabani. Approximation algorithms for the 0 -extension problem. SIAM Journal on Computing, 34(2):358-372, 2005.
[3] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar. On the hardness of approximating multicut and sparsest-cut. computational complexity, 15(2):94-114, 2006.
[4] N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)cut theorems and their applications. SIAM J. Comput., 25(2):235-251, 1996.
[5] F. T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multicommodity flow problems with application to approximation algorithms. In Proc., IEEE Symposium on Foundations of Computer Science (FOCS), pages 422-431, 1988.

[^0]: ${ }^{1}$ Lecture notes by Deeparnab Chakrabarty. Last modified : 24th Feb, 2022
 These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at deeparnab@dartmouth.edu. Highly appreciated!

