The Sparsest Cut ${ }^{1}$

- The final cut problem we will look at is the sparsest cut problem. Once again, the input is an undirected graph $G=(V, E)$ with non-negative costs $c(e)$ on edges. The objective is to find a subset of vertices $S \subseteq F$ such that the ratio $\Phi(S):=\frac{\sum_{e \in \partial S} c(e)}{|S| \cdot|V \backslash S|}$ is minimized. $\Phi(S)$ is called the sparsity of cut, and the above problem is to find the sparsest cut in G.
- Linear Programming Relaxation. As in the previous cut problems, we have "distance variables" $d_{u v}$ which satisfy triangle inequality. The idea is for two vertices u and v in different parts (that is one in S and the other in $V \backslash S$), then we want $d_{u v}=1$, and the others have $d_{u v}=0$. With this semantic, note that (a) $\sum_{e \in \partial S} c(e)=\sum_{e=(u, v) \in R} c(e) d_{u v}$, and (b) $|S| \cdot|V \backslash S|=\sum_{u, v \in V} d_{u v}$. Part (b) takes a little staring, but make sure you get it.
So, the LP relaxation would like to find $d_{u v}$'s for every pair satisfying triangle inequality, but the objective seems to be a ratio of two linear functions. How do we fix that? The main observation is that the triangle inequality (and the non-negativity inequality) is "scale-free", that is, the " b-side" is 0 in the LP. And therefore, multiplying the variables by any parameter doesn't change feasibility. Once we have that, then the ratio of two linear functions can be handled by simply asserting that the denominator equals 1, and minimizing the numerator. This is the LP for sparsest cut.

$$
\begin{array}{rlr}
\mathrm{Ip}:=\min & \sum_{e=(u, v) \in E} c(e) d_{u v} & \\
& d_{u w} \leq d_{u v}+d_{v w}, \quad \forall i \in F, \forall\{u, v, w\} \subseteq V \\
& d_{v v}=0, & \forall v \in V \\
& \sum_{u \in V} \sum_{v \in V} d_{u v}=1 & \\
&
\end{array}
$$

We now describe two algorithms for the sparsest cut problem. The first algorithm is similar to the region growing algorithm for multicut we saw in the previous lecture. Indeed, as mentioned in those notes, the idea generated in the sparsest cut problem. This algorithm will give an $O(\log n)$ approximation unless a certain condition occurs. However, we show a second algorithm which, if that condition occurs, in fact gives an $O(1)$-approximation. Let's begin with region growing.

- Low Diameter Decomposition Algorithm. We begin with a lemma akin to the region growing lemma from multicut which can be proved similarly. Indeed, we defer the proof to the very end (or the reader, upon reading the multicut notes, may do it as an exercise). To state the lemma, we need the notion of the diameter of a subset $S \subseteq V$ given the "distances" $d_{u v}$; it is precisely $\operatorname{diam}(S)=\max _{u, v \in S} d_{u v}$.

Lemma 1 (Low Diameter Decomposition). Suppose we are given any undirected graph $G=$ (V, E) and a solution $d_{u v}$ to (Sparsest Cut LP) with objective value Ip. There is an efficient algorithm Low Diameter Decomposition which takes input $R>0$ and finds a partition

[^0]$\Pi:=\left(S_{1}, \ldots, S_{k}\right)$ of V such that
a. $\operatorname{diam}\left(S_{i}\right) \leq R$, for all $S_{i} \in \Pi$
b. $\sum_{e \in E(\Pi)} c(e) \leq \frac{4 \ln (2 n)}{R} \cdot \mathrm{lp}=O(\log n) \cdot \frac{\mathrm{lp}}{R}$

We can use the diameter decomposition algorithm to obtain an approximation of sparsest cut as follows. Obtain the partition $\Pi=\left(S_{1}, \ldots, S_{k}\right)$ for parameter $R=\frac{1}{n^{2}}$. If there exists some S_{i} with $\left|S_{i}\right|>\frac{n}{3}$, then abort and we move to the second algorithm for sparsest cut, and in fact in that case we would obtain a $O(1)$-approximation as you will see. Otherwise, all $\left|S_{i}\right| \leq n / 3$ and therefore, arbitrarily picking sets till we cross $n / 2$ would give a set T with $|T|$ and $|V \backslash T|$ both $\Theta(n)$. This is the set we return.

```
procedure LDD ALGORithm \((G=(V, E), c(e) \geq 0\) on edges \()\) :
    Solve (Sparsest Cut LP) to obtain \(d_{u v}\) 's.
    Run Low Diameter Decomposition with \(R=\frac{1}{n^{2}}\) to obtain \(\Pi=\left(S_{1}, \ldots, S_{k}\right)\).
    if \(\left|S_{i}\right|>\frac{n}{3}\) for any \(i\) then:
        Abort, and run SwEEPCuT \(\left(S_{i}\right)\).
    else:
        Pick the smallest \(\ell\) such that \(\sum_{i=1}^{\ell}\left|S_{i}\right|>n / 3\).
        return \(T \leftarrow \bigcup_{i=1}^{\ell} S_{i}\).
```

Theorem 1. If the above algorithm reaches Line 6 and returns a set T, then $\Phi(T) \leq O(\log n) \mid p$

Proof. First we observe that $n / 3 \leq|T|<2 n / 3$. The first inequality is by design, and the latter is because $\left|S_{\ell}\right| \leq n / 3$ and $\sum_{i=1}^{\ell-1}\left|S_{i}\right|<n / 3$. Therefore, $|V \backslash T|>n / 3$, and in turn, $|T| \cdot \mid V \backslash$ $T \left\lvert\, \geq \frac{n^{2}}{9}\right.$. The second thing we observe is that $\sum_{e \in \partial T} c(e) \leq \sum_{e \in E(\Pi)} c(e)$, which by Lemma 1 is $\leq O\left(n^{2} \log n\right) \cdot \mid \mathrm{p}$. Therefore, $\left.\Phi(T)=\frac{\sum_{e \in \partial T} c(e)}{|T| \cdot|V \backslash T|} \leq O(\log n) \right\rvert\, \mathrm{p}$

- The Sweep Cut Algorithm. The LDD ALGorithm aborted if it discovered some S_{i} with $\left|S_{i}\right|>\frac{n}{3}$ and $\operatorname{diam}\left(S_{i}\right) \leq \frac{1}{n^{2}}$. This seems to suggest we have a "lot" of vertices also clustered around a "very small" region. In that case, we can just use a sweeping cut algorithm we have been using for all the other cut problems. Before we describe the algorithm, let's set a notation: for any subset T and any vertex u, we define $d(T, u):=\min _{v \in T} d_{v u}$. Note that for $u \in T, d(T, u)=0$.

```
procedure SWEEP CUT(T):
    \(\triangleright\) We assume \(G, c, d\) are given and \(\operatorname{diam}(T) \leq \frac{1}{n^{2}}\) and \(|T|>n / 3\)
    Let's rename the vertices in \(V \backslash T\) as \(v_{1}, \ldots, v_{k}\) in increasing order of \(d(T, v)\).
    For any \(0 \leq i \leq k\), let \(T_{i}:=T \cup\left\{v_{1}, \ldots, v_{i}\right\}\); note \(T_{0}=T\).
    return \(T_{i}\) with the smallest \(\Phi\left(T_{i}\right)\).
    \(\triangleright\) The above algorithm makes sense since there are only \(n\) different \(S_{r}\) 's and one picks
the sparsest.
```

Theorem 2. If diam $(T) \leq \frac{1}{n^{2}}$ and $|T|>\frac{n}{3}$, then the sparsity of the cut returned by SWEEP CUT is $\leq 12 \cdot \mathrm{lp}$.

Proof. We prove this via a probabilistic argument. Define $R:=\max _{v \in V \backslash T} d(T, v)$, or using the notation in the algorithm, $R=d\left(T, v_{k}\right)$. Consider the following random set: sample $r \in[0, R)$ and let $S_{r}:=\{v \in V: d(T, v) \leq r\}$ be a random set. First note that the support of S_{r} is $\left\{T_{0}, \ldots, T_{k}\right\}$. We now claim the following:

$$
\begin{equation*}
\frac{\operatorname{Exp}\left[\sum_{e \in \partial S_{r}} c(e)\right]}{\operatorname{Exp}\left[\left|S_{r}\right|\left|V \backslash S_{r}\right|\right]} \leq 12 \cdot \mathrm{lp} \tag{Claim}
\end{equation*}
$$

For the moment suppose (Claim) is true. Therefore, $\operatorname{Exp}\left[\sum_{e \in \partial S_{r}} c(e)\right]-12 \cdot \mid \mathrm{lp} \cdot \operatorname{Exp}\left[\left|S_{r} \| V \backslash S_{r}\right|\right] \leq 0$, or by linearity of expectation

$$
\operatorname{Exp}\left[\sum_{e \in \partial S_{r}} c(e)-12 \cdot|\mathrm{p} \cdot| S_{r}|\cdot| V \backslash S_{r} \mid\right] \leq 0
$$

In particular, this means there is some S_{r} in the support, that is, some T_{j} for $0 \leq j \leq k$ such that

$$
\sum_{e \in \partial T_{j}} c(e)-12 \cdot|\mathrm{lp} \cdot| T_{j}|\cdot| V \backslash T_{j} \mid \leq 0 \Rightarrow \Phi\left(T_{j}\right) \leq 12 \cdot \mathrm{lp}
$$

and this proves the theorem. We now prove (Claim)
We first upper bound $\operatorname{Exp}\left[\sum_{e \in \partial S_{r}} c(e)\right]$. This part is similar to what we have seen so far. Fix an edge $e=(u, v)$ and wlog, assume $d(T, u) \leq d(T, v)$. This edge e is present in ∂S_{r} iff $d(T, u) \leq r<$ $d(T, v)$. Now let $z \in T$ be the vertex attaining $d(T, u)=d_{z u}$.

$$
d(T, v) \leq d_{z v} \leq d_{z u}+d_{u v}=d(T, u)+d_{u v}
$$

Therefore, $\operatorname{Pr}\left[e \in \partial S_{r}\right] \leq \operatorname{Pr}\left[r \in\left[d(T, u), d(T, u)+d_{u v}\right]\right] \leq \frac{d_{u v}}{R}$. And so,

$$
\begin{equation*}
\operatorname{Exp}\left[\sum_{e \in \partial S_{r}} c(e)\right] \leq \sum_{e \in E} c(e) \cdot \frac{d_{u v}}{R}=\frac{\mathrm{lp}}{R} \tag{3}
\end{equation*}
$$

Next, we lower bound $\operatorname{Exp}\left[\left|V \backslash S_{r}\right|\right]$. To this end, let $g(r)$ denote the number of vertices in $v \in V V$ with $d(T, v)>r$. Then note

$$
\operatorname{Exp}\left[\left|V \backslash S_{r}\right|\right]=\frac{1}{R} \int_{r=0}^{R} g(r) d r=\frac{1}{R} \int_{r=0}^{R}\left(\sum_{v \in V} \mathbf{1}_{d(T, v)>r}\right) d r=\frac{1}{R} \cdot \sum_{v \in V} \int_{r=0}^{R} \mathbf{1}_{d(T, v)>r} d r
$$

where $\mathbf{1}_{d(T, v)>r}$ is 1 if $d(T, v)>r$ and 0 otherwise. Now observe that $\int_{r=0}^{R} \mathbf{1}_{d(T, v)>r} d r$ is precisely $d(T, v)$, and so we get

$$
\begin{equation*}
\operatorname{Exp}\left[\left|V \backslash S_{r}\right|\right]=\frac{1}{R} \cdot \sum_{v \in V} d(T, v) \tag{4}
\end{equation*}
$$

We now (finally) use that $\sum_{u, v \in V} d_{u v}=1$ as follows. First we note, by triangle inequality, that $d_{u v} \leq d(T, u)+\operatorname{diam}(T)+d(T, v)$. To see this, let $d(T, u)=d_{u z}$ and $d(T, v)=d_{v y}$, and use triangle inequality to assert $d_{u v} \leq d_{u z}+d_{z y}+d_{v y}$, and then use the definition of $\operatorname{diam}(T)$. Therefore,

$$
1=\sum_{u, v \in V} d_{u v} \leq \sum_{u, v \in V}(d(T, u)+\operatorname{diam}(T)+d(T, v))=\binom{n}{2} \cdot \operatorname{diam}(T)+2 n \sum_{v \in V} d(T, v)
$$

Using $\operatorname{diam}(T) \leq \frac{1}{n^{2}}$, we get $1 \leq \frac{1}{2}+2 n \sum_{v \in V} d(T, v)$, or $\sum_{v \in V} d(T, v) \geq \frac{1}{4 n}$. Substituting in (4), we get $\operatorname{Exp}\left[\left|V \backslash S_{r}\right|\right] \geq \frac{1}{4 n R}$. Now since $T \subseteq S_{r}$, we get $\left|S_{r}\right| \geq|T| \geq \frac{n}{3}$. Therefore,

$$
\begin{equation*}
\operatorname{Exp}\left[\left|S_{r}\right| \cdot\left|V \backslash S_{r}\right|\right] \geq \frac{1}{12 R} \tag{5}
\end{equation*}
$$

Combining (3) and (5), we obtain the proof of (Claim).

- Proof of Lemma 1. The proof is very similar to the region growing algorithm for multicut we saw earlier. Indeed, as we noted, the technique was invented for the sparsest cut problem. We repeat the proof in this lecture note for completeness' sake.
We start with a couple of definitions. Given a parameter $r \in \mathbb{R}$, a subset $U \subseteq V$, a vertex $a \in U$ let $S_{a}(r ; U):=\left\{u \in U: d_{u a} \leq r\right\}$. Define $\partial S_{a}(r ; U):=\left\{(u, v) \in E[U]: u \in S_{a}(r ; U), v \notin\right.$ $\left.S_{a}(r ; U)\right\}$. Let us define $E\left[S_{a}(r ; U)\right]=\left\{(u, v) \in E[U]: u, v \in S_{a}(r)\right\}$. Here $E[U]$ are the edges with both endpoints in U. The main claim is the following.

Claim 1. For every subset $U \subseteq V$, every vertex $a \in U$, there exists $r \in[0, R / 2]$ such that

$$
\sum_{e \in \partial S_{a}(r ; U)} c(e) \leq \frac{2 \ln (2 n)}{R} \cdot\left(\frac{\mathrm{lp}}{n}+\sum_{(u, v) \in E\left[S_{a}(r ; U)\right]} c(u, v) d_{u v}+\sum_{(u, v) \in \partial S_{a}(r ; U)} c(u, v) d_{u v}\right)
$$

Furthermore, this r can be found efficiently.

Before proving the claim, let us describe the algorithm assuming the claim.

```
procedure Low Diameter Decomposition \((G, c, d, R)\) :
    Initialize \(U \leftarrow V ; \Pi \leftarrow \emptyset\); Ctrs \(\leftarrow \emptyset\).
    while \(U \neq \emptyset\) do:
        Select an \(a \in U\) arbitrarily and add it to Ctrs.
        Find \(r_{a} \in[0, R / 2]\) as in Claim 1 satisfying the conditions mentioned there.
        Add \(S_{i}:=S_{r_{a}}(a ; U)\) to \(\Pi\)
    return \(\Pi\).
```

We claim that Π satisfies the conditions of Lemma 1. First, $\operatorname{diam}\left(S_{i}\right) \leq R$. This is because for any
two $u, v \in S_{r_{a}}(a)$, we have $d_{u v} \leq d_{u a}+d_{v a} \leq 2 r_{a} \leq R$. Next, we note that

$$
\begin{align*}
& c(E(\Pi))=\sum_{a \in \mathrm{Ctrs}} \sum_{e \in \partial S_{r_{a}}(a ; U)} c(e) \tag{6}\\
& \underbrace{}_{\text {Claim 1 }} \leq \\
& \quad \frac{2 \ln (2 n)}{R} \cdot \sum_{a \in \mathrm{Ctrs}}\left(\frac{\operatorname{p}}{n}+\sum_{(u, v) \in E\left[S_{a}(r ; U)\right]} c(u, v) d_{u v}+\sum_{(u, v) \in \partial S_{a}(r ; U)} c(u, v) d_{u v}\right) \tag{7}\\
& \quad \frac{4 \ln (2 n)}{R} \cdot \operatorname{lp}
\end{align*}
$$

In the equality (6), the set U is the one when a was added to Ctrs, and (7) follows since (a) $\mid C$ trs $\mid \leq n$, and (b) every edge $e \in E$ is at most one $E\left[S_{a}(r ; U)\right]$ or $\partial S_{a}(r ; U)$.

Proof of Claim 1. Define the "volume" of a ball of radius r around a center $a \in V$.

$$
\begin{equation*}
\mathrm{Vol}_{a}(r ; U):=\frac{\mathrm{p}}{n}+\sum_{(u, v) \in E\left[S_{a}(r ; U)\right]} c(u, v) d_{u v}+\sum_{(u, v) \in \partial S_{a}(r ; U), u \in S_{a}(r ; U)} c(u, v) \cdot\left(r-d_{u a}\right) \tag{8}
\end{equation*}
$$

Note that for (u, v) participating in the last summation in the definition, we have $d_{v a}>r$ and so $r-d_{u a}<d_{v a}-d_{u a} \leq d_{u v}$, where the last follows from triangle inequality. And therefore, $\mathrm{Vol}_{a}(r ; U)$ is at most the parenthesized term in the RHS of the claim. So, it suffices to prove that there exists $r \in(0, R / 2)$ such that $\sum_{e \in \partial S_{a}(r ; U)} c(e) \leq \frac{2 \ln (2 n)}{R} \operatorname{Vol}_{a}(r ; U)$. So, for the sake of contradiction this is not the case, and for all r, we have the inequality flipped.
Next, note that $\mathrm{Vol}_{a}(r ; U)$ is a continuous, piece-wise linear function of r, and crucially observe that

$$
\frac{d \mathrm{Vol}_{a}(r ; U)}{d r}=\sum_{(u, v) \in \partial S_{i}(r ; U)} c(u, v)>\frac{2 \ln (2 n)}{R} \cdot \mathrm{Vol}_{a}(r ; U) \Rightarrow \frac{d \mathrm{Vol}_{a}(r ; U)}{\mathrm{Vol}_{a}(r ; U)}>\frac{2 \ln (2 n)}{R} \cdot d r
$$

Therefore, if we integrate with r going from 0 to $R / 2$, we get $\ln \left(\frac{\mathrm{V}_{0} 1_{a}(R / 2 ; U)}{\mathrm{Vol}_{a}(0 ; U)}\right)>\ln (2 n)$. By design, $\operatorname{Vol}_{a}(0 ; U)=\mathrm{lp} / n$. And, $\operatorname{Vol}_{a}(R / 2 ; U) \leq 2 \mathrm{lp}$ (being extremely generous). Therefore, the LHS is at most $\ln (2 n)$, which is a contradiction.

Notes

The sparsest cut is intimately connected to the balanced cut which asks to divide the graph into roughly equal pieces and minimize the number of crossing edges. This notion of partition is, in many applications, a much more robust notion of connectivity of a graph, and has numerous applications from image processing to network analysis. Sparsity is also connected to expansion of a graph which is a notion of "algebraic connectivity", and we point the reader to the excellent survey [3] by Hoory, Linial, and Wigderson to learn more about this. The algorithm described here is from the seminal paper [5] by Leighton and Rao. The current best known approximation for sparsest cut is an $O(\sqrt{\log n})$-approximation from another seminal paper [1] by Arora, Rao, and Vazirani. The sparsest cut is also extremely connected to metric embeddings, and we may touch on this in a later lecture. There is a $O(1)$-approximation known when the graph is a planar or a bounded-genus graph, and there is a 2-approximation known in graphs of low tree-width. The former result is in the paper [4] by Klein, Plotkin, and Rao, and the latter is in the paper [2] by Gupta, Talwar, and Witmer.

References

[1] S. Arora, S. Rao, and U. Vazirani. Expander Flows, Geometric Embeddings, and Graph Partitionings. Proceedings of the $36^{\text {th }}$ Annual ACM Symposium on the Theory of Computing (STOC), pages 222-231, 2004.
[2] A. Gupta, K. Talwar, and D. Witmer. Sparsest cut on bounded treewidth graphs: algorithms and hardness results. In Proc., ACM Symposium on Theory of Computing (STOC), pages 281-290, 2013.
[3] S. Hoory, N. Linial, and A. Wigderson. Expander Graphs and their Applications. Bull. of the Amer. Soc., 43(4):439-561, 2006.
[4] P. Klein, S. Plotkin, and S. Rao. Excluded minors, network decomposition, and multicommodity flow. In Proc., ACM Symposium on Theory of Computing (STOC), pages 682-690, 1993.
[5] Leighton and Rao. Multicommodity Max-Flow Min-Cut Theorems and Their Use in Designing Approximation Algorithms. Journal of the ACM, 46, 1999.

[^0]: ${ }^{1}$ Lecture notes by Deeparnab Chakrabarty. Last modified: 19th Feb, 2022
 These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at deeparnab@dartmouth.edu. Highly appreciated!

