
The Sparsest Cut1

• The final cut problem we will look at is the sparsest cut problem. Once again, the input is an undi-
rected graph G = (V,E) with non-negative costs c(e) on edges. The objective is to find a subset of
vertices S ⊆ F such that the ratio Φ(S) :=

∑
e∈∂S c(e)

|S|·|V \S| is minimized. Φ(S) is called the sparsity of
cut, and the above problem is to find the sparsest cut in G.

• Linear Programming Relaxation. As in the previous cut problems, we have “distance variables” duv
which satisfy triangle inequality. The idea is for two vertices u and v in different parts (that is one in
S and the other in V \ S), then we want duv = 1, and the others have duv = 0. With this semantic,
note that (a)

∑
e∈∂S c(e) =

∑
e=(u,v)∈R c(e)duv, and (b) |S| · |V \ S| =

∑
u,v∈V duv. Part (b) takes a

little staring, but make sure you get it.

So, the LP relaxation would like to find duv’s for every pair satisfying triangle inequality, but the
objective seems to be a ratio of two linear functions. How do we fix that? The main observation
is that the triangle inequality (and the non-negativity inequality) is “scale-free”, that is, the “b-side”
is 0 in the LP. And therefore, multiplying the variables by any parameter doesn’t change feasibility.
Once we have that, then the ratio of two linear functions can be handled by simply asserting that the
denominator equals 1, and minimizing the numerator. This is the LP for sparsest cut.

lp := min
∑

e=(u,v)∈E

c(e)duv (Sparsest Cut LP)

duw ≤ duv + dvw, ∀i ∈ F, ∀{u, v, w} ⊆ V (1)

dvv = 0, ∀v ∈ V (2)∑
u∈V

∑
v∈V

duv = 1

We now describe two algorithms for the sparsest cut problem. The first algorithm is similar to the
region growing algorithm for multicut we saw in the previous lecture. Indeed, as mentioned in
those notes, the idea generated in the sparsest cut problem. This algorithm will give an O(log n)-
approximation unless a certain condition occurs. However, we show a second algorithm which, if that
condition occurs, in fact gives an O(1)-approximation. Let’s begin with region growing.

• Low Diameter Decomposition Algorithm. We begin with a lemma akin to the region growing lemma
from multicut which can be proved similarly. Indeed, we defer the proof to the very end (or the reader,
upon reading the multicut notes, may do it as an exercise). To state the lemma, we need the notion of
the diameter of a subset S ⊆ V given the “distances” duv; it is precisely diam(S) = maxu,v∈S duv.

Lemma 1 (Low Diameter Decomposition). Suppose we are given any undirected graph G =
(V,E) and a solution duv to (Sparsest Cut LP) with objective value lp. There is an efficient
algorithm LOW DIAMETER DECOMPOSITION which takes input R > 0 and finds a partition

1Lecture notes by Deeparnab Chakrabarty. Last modified : 19th Feb, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1

Π := (S1, . . . , Sk) of V such that

a. diam(Si) ≤ R, for all Si ∈ Π

b.
∑

e∈E(Π) c(e) ≤
4 ln(2n)

R · lp = O(log n) · lpR

We can use the diameter decomposition algorithm to obtain an approximation of sparsest cut as fol-
lows. Obtain the partition Π = (S1, . . . , Sk) for parameter R = 1

n2 . If there exists some Si with
|Si| > n

3 , then abort and we move to the second algorithm for sparsest cut, and in fact in that case
we would obtain a O(1)-approximation as you will see. Otherwise, all |Si| ≤ n/3 and therefore,
arbitrarily picking sets till we cross n/2 would give a set T with |T | and |V \ T | both Θ(n). This is
the set we return.

1: procedure LDD ALGORITHM(G = (V,E), c(e) ≥ 0 on edges):
2: Solve (Sparsest Cut LP) to obtain duv’s.
3: Run LOW DIAMETER DECOMPOSITION with R = 1

n2 to obtain Π = (S1, . . . , Sk).
4: if |Si| > n

3 for any i then:
5: Abort, and run SWEEPCUT(Si).
6: else:
7: Pick the smallest ` such that

∑`
i=1 |Si| > n/3.

8: return T ←
⋃`

i=1 Si.

Theorem 1. If the above algorithm reaches Line 6 and returns a set T , then Φ(T) ≤ O(log n)lp

Proof. First we observe that n/3 ≤ |T | < 2n/3. The first inequality is by design, and the latter
is because |S`| ≤ n/3 and

∑`−1
i=1 |Si| < n/3. Therefore, |V \ T | > n/3, and in turn, |T | · |V \

T | ≥ n2

9 . The second thing we observe is that
∑

e∈∂T c(e) ≤
∑

e∈E(Π) c(e), which by Lemma 1 is

≤ O
(
n2 log n

)
· lp. Therefore, Φ(T) =

∑
e∈∂T c(e)

|T |·|V \T | ≤ O(log n)lp

• The Sweep Cut Algorithm. The LDD ALGORITHM aborted if it discovered some Si with |Si| > n
3

and diam(Si) ≤ 1
n2 . This seems to suggest we have a “lot” of vertices also clustered around a “very

small” region. In that case, we can just use a sweeping cut algorithm we have been using for all the
other cut problems. Before we describe the algorithm, let’s set a notation: for any subset T and any
vertex u, we define d(T, u) := minv∈T dvu. Note that for u ∈ T , d(T, u) = 0.

1: procedure SWEEP CUT(T):
2: . We assume G, c, d are given and diam(T) ≤ 1

n2 and |T | > n/3
3: Let’s rename the vertices in V \ T as v1, . . . , vk in increasing order of d(T, v).
4: For any 0 ≤ i ≤ k, let Ti := T ∪ {v1, . . . , vi}; note T0 = T .
5: return Ti with the smallest Φ(Ti).
6: . The above algorithm makes sense since there are only n different Sr’s and one picks

the sparsest.

2

Theorem 2. If diam(T) ≤ 1
n2 and |T | > n

3 , then the sparsity of the cut returned by SWEEP CUT

is ≤ 12 · lp.

Proof. We prove this via a probabilistic argument. Define R := maxv∈V \T d(T, v), or using the
notation in the algorithm, R = d(T, vk). Consider the following random set: sample r ∈ [0, R) and
let Sr := {v ∈ V : d(T, v) ≤ r} be a random set. First note that the support of Sr is {T0, . . . , Tk}.
We now claim the following:

Exp[
∑

e∈∂Sr
c(e)]

Exp[|Sr||V \ Sr|]
≤ 12 · lp (Claim)

For the moment suppose (Claim) is true. Therefore, Exp[
∑

e∈∂Sr
c(e)]−12·lp·Exp[|Sr||V \Sr|] ≤ 0,

or by linearity of expectation

Exp

 ∑
e∈∂Sr

c(e)− 12 · lp · |Sr| · |V \ Sr|

 ≤ 0

In particular, this means there is some Sr in the support, that is, some Tj for 0 ≤ j ≤ k such that∑
e∈∂Tj

c(e)− 12 · lp · |Tj | · |V \ Tj | ≤ 0 ⇒ Φ(Tj) ≤ 12 · lp

and this proves the theorem. We now prove (Claim)

We first upper bound Exp[
∑

e∈∂Sr
c(e)]. This part is similar to what we have seen so far. Fix an edge

e = (u, v) and wlog, assume d(T, u) ≤ d(T, v). This edge e is present in ∂Sr iff d(T, u) ≤ r <
d(T, v). Now let z ∈ T be the vertex attaining d(T, u) = dzu.

d(T, v) ≤ dzv ≤ dzu + duv = d(T, u) + duv

Therefore, Pr[e ∈ ∂Sr] ≤ Pr[r ∈ [d(T, u), d(T, u) + duv]] ≤ duv
R . And so,

Exp[
∑

e∈∂Sr

c(e)] ≤
∑
e∈E

c(e) · duv
R

=
lp

R
(3)

Next, we lower bound Exp[|V \ Sr|]. To this end, let g(r) denote the number of vertices in v ∈ V V
with d(T, v) > r. Then note

Exp[|V \ Sr|] =
1

R

∫ R

r=0
g(r)dr =

1

R

∫ R

r=0

(∑
v∈V

1d(T,v)>r

)
dr =

1

R
·
∑
v∈V

∫ R

r=0
1d(T,v)>rdr

where 1d(T,v)>r is 1 if d(T, v) > r and 0 otherwise. Now observe that
∫ R
r=0 1d(T,v)>rdr is precisely

d(T, v), and so we get

Exp[|V \ Sr|] =
1

R
·
∑
v∈V

d(T, v) (4)

3

We now (finally) use that
∑

u,v∈V duv = 1 as follows. First we note, by triangle inequality, that
duv ≤ d(T, u) + diam(T) + d(T, v). To see this, let d(T, u) = duz and d(T, v) = dvy, and use
triangle inequality to assert duv ≤ duz +dzy +dvy, and then use the definition of diam(T). Therefore,

1 =
∑

u,v∈V
duv ≤

∑
u,v∈V

(d(T, u) + diam(T) + d(T, v)) =

(
n

2

)
· diam(T) + 2n

∑
v∈V

d(T, v)

Using diam(T) ≤ 1
n2 , we get 1 ≤ 1

2 + 2n
∑

v∈V d(T, v), or
∑

v∈V d(T, v) ≥ 1
4n . Substituting in (4),

we get Exp[|V \ Sr|] ≥ 1
4nR . Now since T ⊆ Sr, we get |Sr| ≥ |T | ≥ n

3 . Therefore,

Exp[|Sr| · |V \ Sr|] ≥
1

12R
(5)

Combining (3) and (5), we obtain the proof of (Claim).

• Proof of Lemma 1. The proof is very similar to the region growing algorithm for multicut we saw
earlier. Indeed, as we noted, the technique was invented for the sparsest cut problem. We repeat the
proof in this lecture note for completeness’ sake.

We start with a couple of definitions. Given a parameter r ∈ R, a subset U ⊆ V , a vertex a ∈ U
let Sa(r;U) := {u ∈ U : dua ≤ r}. Define ∂Sa(r;U) := {(u, v) ∈ E[U] : u ∈ Sa(r;U), v /∈
Sa(r;U)}. Let us define E[Sa(r;U)] = {(u, v) ∈ E[U] : u, v ∈ Sa(r)}. Here E[U] are the edges
with both endpoints in U . The main claim is the following.

Claim 1. For every subset U ⊆ V , every vertex a ∈ U , there exists r ∈ [0, R/2] such that

∑
e∈∂Sa(r;U)

c(e) ≤ 2 ln(2n)

R
·

 lp

n
+

∑
(u,v)∈E[Sa(r;U)]

c(u, v)duv +
∑

(u,v)∈∂Sa(r;U)

c(u, v)duv

Furthermore, this r can be found efficiently.

Before proving the claim, let us describe the algorithm assuming the claim.

1: procedure LOW DIAMETER DECOMPOSITION(G, c, d,R):
2: Initialize U ← V ; Π← ∅; Ctrs← ∅.
3: while U 6= ∅ do:
4: Select an a ∈ U arbitrarily and add it to Ctrs.
5: Find ra ∈ [0, R/2] as in Claim 1 satisfying the conditions mentioned there.
6: Add Si := Sra(a;U) to Π

7: return Π.

We claim that Π satisfies the conditions of Lemma 1. First, diam(Si) ≤ R. This is because for any

4

two u, v ∈ Sra(a), we have duv ≤ dua + dva ≤ 2ra ≤ R. Next, we note that

c(E(Π)) =
∑

a∈Ctrs

∑
e∈∂Sra (a;U)

c(e) (6)

≤︸︷︷︸
Claim 1

2 ln(2n)

R
·
∑

a∈Ctrs

 lp

n
+

∑
(u,v)∈E[Sa(r;U)]

c(u, v)duv +
∑

(u,v)∈∂Sa(r;U)

c(u, v)duv

≤ 4 ln(2n)

R
· lp (7)

In the equality (6), the set U is the one when a was added to Ctrs, and (7) follows since (a) |Ctrs| ≤ n,
and (b) every edge e ∈ E is at most one E[Sa(r;U)] or ∂Sa(r;U).

Proof of Claim 1. Define the “volume” of a ball of radius r around a center a ∈ V .

Vola(r;U) :=
lp

n
+

∑
(u,v)∈E[Sa(r;U)]

c(u, v)duv +
∑

(u,v)∈∂Sa(r;U),u∈Sa(r;U)

c(u, v) · (r − dua) (8)

Note that for (u, v) participating in the last summation in the definition, we have dva > r and so
r−dua < dva−dua ≤ duv, where the last follows from triangle inequality. And therefore, Vola(r;U)
is at most the parenthesized term in the RHS of the claim. So, it suffices to prove that there exists
r ∈ (0, R/2) such that

∑
e∈∂Sa(r;U) c(e) ≤

2 ln(2n)
R Vola(r;U). So, for the sake of contradiction this

is not the case, and for all r, we have the inequality flipped.

Next, note that Vola(r;U) is a continuous, piece-wise linear function of r, and crucially observe that

d Vola(r;U)

dr
=

∑
(u,v)∈∂Si(r;U)

c(u, v) >
2 ln(2n)

R
· Vola(r;U) ⇒ dVola(r;U)

Vola(r;U)
>

2 ln(2n)

R
· dr

Therefore, if we integrate with r going from 0 to R/2, we get ln
(
Vola(R/2;U)
Vola(0;U)

)
> ln(2n). By design,

Vola(0;U) = lp/n. And, Vola(R/2;U) ≤ 2lp (being extremely generous). Therefore, the LHS is at
most ln(2n), which is a contradiction.

Notes

The sparsest cut is intimately connected to the balanced cut which asks to divide the graph into roughly
equal pieces and minimize the number of crossing edges. This notion of partition is, in many applications, a
much more robust notion of connectivity of a graph, and has numerous applications from image processing
to network analysis. Sparsity is also connected to expansion of a graph which is a notion of “algebraic
connectivity”, and we point the reader to the excellent survey [3] by Hoory, Linial, and Wigderson to learn
more about this. The algorithm described here is from the seminal paper [5] by Leighton and Rao. The
current best known approximation for sparsest cut is an O(

√
log n)-approximation from another seminal

paper [1] by Arora, Rao, and Vazirani. The sparsest cut is also extremely connected to metric embeddings,
and we may touch on this in a later lecture. There is a O(1)-approximation known when the graph is a planar
or a bounded-genus graph, and there is a 2-approximation known in graphs of low tree-width. The former
result is in the paper [4] by Klein, Plotkin, and Rao, and the latter is in the paper [2] by Gupta, Talwar, and
Witmer.

5

References

[1] S. Arora, S. Rao, and U. Vazirani. Expander Flows, Geometric Embeddings, and Graph Partitionings.
Proceedings of the 36th Annual ACM Symposium on the Theory of Computing (STOC), pages 222–231,
2004.

[2] A. Gupta, K. Talwar, and D. Witmer. Sparsest cut on bounded treewidth graphs: algorithms and hardness
results. In Proc., ACM Symposium on Theory of Computing (STOC), pages 281–290, 2013.

[3] S. Hoory, N. Linial, and A. Wigderson. Expander Graphs and their Applications. Bull. of the Amer.
Soc., 43(4):439–561, 2006.

[4] P. Klein, S. Plotkin, and S. Rao. Excluded minors, network decomposition, and multicommodity flow.
In Proc., ACM Symposium on Theory of Computing (STOC), pages 682–690, 1993.

[5] Leighton and Rao. Multicommodity Max-Flow Min-Cut Theorems and Their Use in Designing Ap-
proximation Algorithms. Journal of the ACM, 46, 1999.

6

