
Minimum s, t-cut and Multiway Cut1

• Cut Problems. In the next few lectures we look at various cut problems in graphs. The input will
be an undirected graph G = (V,E) with non-negative costs c(e) on edges. The objective for each
problem is to select a subset F ⊆ E of these edges with minimum cost c(F ) :=

∑
e∈F c(e), so that

upon deleting F certain vertices get cut or disconnected.

• Minimum s, t-cut Problem and the Distance based LP. We begin with a problem which has an exact
algorithm and which you have seen before in your undergraduate algorithms class. It is the min s, t-
cut problem. The objective is to select F such that after deleting F , we disconnect s from t. However,
we will look at an LP relaxation for the problem, and argue that it is exact. Let’s begin with the linear
program.

We have variables xe for every edge e = (u, v) indicating whether we select (u, v) in our solution
or not. The objective is clear, it is to minimize

∑
e∈E c(e)xe. What about the set of constraints?

We need that in every path from s to t, we select at least one edge into F ; if not, then s and t
would remain connected. We could write a collection of exponentially many constraints and indeed
we could solve it using the ellipsoid method. However, we write a succinct LP. It stems from the
following interpretation. If we think of xe as the “length” of the edge e, then saying that every path
contains at least one edge in F is equivalent to saying that the length of this path is at least 1. In
other words, the constraint can be captured by saying that the “distance” from s to t induced by these
lengths xe has to be at least 1.

How do we capture these distances? For every pair of nodes (not necessarily neighboring) we now
introduce a variable duv indicating the distance. We need dst ≥ 1. How should the d-variables relate
with the x-variables? Well, for any edge (u, v), the distance duv is at most the length xuv. Finally, the
fact that the d’s induce a “distance”, we introduce the “triangle inequality constraint” : between any
triple of vertices {u, v, w}, we must have duw ≤ duv + dvw. Note that the true shortest path distances
do satisfy this, and thus the LP below is a valid relaxation.

lp := min
∑
e∈E

c(e)xe (s, t-min cut LP)

duv ≤ xe, ∀e ∈ E, e = (u, v) (1)

duw ≤ duv + dvw, ∀i ∈ F, ∀{u, v, w} ⊆ V (2)

dvv = 0, ∀v ∈ V (3)

dst ≥ 1 (4)

Exercise: K♥ Write the dual for the LP above. Interpret the dual.
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• An Exact algorithm via Randomized Rounding. We now show a randomized algorithm which returns
an s, t cut with probability 1 with expected cost ≤ lp. This should remind of another algorithm we
saw in class earlier. Furthermore, it also shows randomization is completely unnecessary. Here is the
algorithm.

1: procedure RANDOMIZED MIN s, t-CUT(G = (V,E), c(e) ≥ 0 on edges):
2: Solve (s, t-min cut LP) to obtain xe’s and duv’s.
3: Randomly sample r ∈ (0, 1) uniformly.
4: S := {v : dsv ≤ r}.
5: return F := ∂S.

Theorem 1. RANDOMIZED MIN s, t-CUT returns a set F whose removal disconnects s and t
with probability 1, and Exp[

∑
e∈F c(e)] = lp.

Proof. First, let us observe that F is a valid min-cut with probability 1. Indeed, the set S contains s
since dss = 0 and t /∈ S since dst ≥ 1 > r. Thus, ∂S disconnects s from t irrespective of r.

Now fix an edge e := r(u, v) and let us analyze the probability (u, v) ∈ F . We perform this a bit
carefully as similar calculations will be used at least twice more. Let 1e∈F be the event e ∈ F . We
note that this event is the union of two events.

1e∈F = 1u∈S,v /∈S ∪ 1u/∈S,v∈S

At this point, without loss of generality, let us assume dsu ≤ dsv (otherwise swap their names). This
allows us to infer that 1u/∈S,v∈S cannot occur: if v ∈ S, then dsv ≤ r which would imply dsu ≤ r.
Therefore, the only event to analyze is 1u∈S,v /∈S . Therefore,

Pr[1e∈F ] = Pr[1u∈S,v /∈S ] = Pr[dsu ≤ r < dsv]

What is the probability that this random r is between dsu and dsv? Well, triangle inequality (2) tells
us that dsv ≤ dsu + duv, and (1) tells us dsv ≤ dsu + xe. Thus the event dsu ≤ r < dsv is a subset of
the event dsu ≤ r < dsu + xe. Therefore, we get

Pr[1e∈F ] = Pr[dsu ≤ r < dsv] ≤ Pr
r
[r ∈ [dsu, dsu + xe]]

And the final probability, the chance that a random r ∈ [0, 1] lies in the interval [dsu, dsu + xe] is
precisely min(xe, 1− dsv) ≤ xe. In sum, the probability a particular edge e lies in F is at most xe.

Applying linearity of expectation gives us Exp[
∑

e∈F c(e)] ≤
∑

e∈E c(e)xe = lp.

Remark: As in the case of vertex cover in bipartite graphs, the above shows that running the
algorithm above with any r ∈ (0, 1) would return a solution with cost exactly equal to lp. Do
you see this?
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• Multiway Cut Problem. Let’s move to an NP-hard problem. We are given k vertices {s1, . . . , sk}.
The objective now is to find F of minimum cost such that in G \ F every si is disconnected from
every other sj . When k = 2, this is simply the minimum s, t-cut problem. Turns out, this problem is
NP -hard even when k = 3.

We begin with the LP very similar to (s, t-min cut LP). In fact, the only difference is that (4) is
replaced by the natural generalization.

lp := min
∑
e∈E

c(e)xe (Multiwaycut LP)

d satisfies (1),(2),(3)

dsisj ≥ 1, ∀i 6= j (5)

• A 2-approximate algorithm via randomized rounding. The algorithm and analysis are similar to
that of min-cut, but subtly different. First, the random radius r is selected uniformly at random from
(0, 1/2). Indeed, this leads to the factor 2. The algorithm is described below

1: procedure RANDOMIZED MULTIWAY CUT(G = (V,E), c(e) ≥ 0 on edges, s1, . . . , sk):
2: Solve (Multiwaycut LP) to obtain xe’s and duv’s.
3: Randomly sample r ∈ (0, 1/2) uniformly.
4: For 1 ≤ i ≤ k, define Si := {v : dsv ≤ r}.
5: return F :=

⋃k
i=1 ∂Si.

Theorem 2. RANDOMIZED MULTIWAY CUT returns a set F whose removal disconnects every
si from every other sj with probability 1, and and Exp[

∑
e∈F c(e)] = 2lp.

Proof. Once again, it should be clear that F is a valid multiway cut for any choice of 0 ≤ r < 1/2
(indeed, even r < 1 would lead to a valid solution). The interesting thing is the expected cost. Fix an
edge e := (u, v); we now prove that the probability (u, v) ∈ F is at most 2xe.

We begin by making a key observation. For any vertex v ∈ V , there can be at most one value
1 ≤ i ≤ k, call this φ(v), such that v can lie in Sφ(v). Put differently, v cannot lie in any other Si for
i 6= φ(v). It could be that for some r, v lies in none of the Si’s, but if it does, then that Si is Sφ(v).
The reason is simple. Suppose v could lie in Si and Sj for i 6= j. Then d(v, si) < 1/2 as for some
radius r we have d(v, si) ≤ r. Similarly, d(v, sj) < 1/2. But then triangle inequality would imply
dsisj < 1, which would be a contradiction.

Now let’s get back to the edge e := (u, v). Say φ(u) = φ(v) = i. Then, the edge (u, v) ∈ F if and
only if u ∈ Si, v /∈ Si, or vice-versa. This case is similar to the s, t-minimum cut argument; the only
difference is that the radius is drawn in [0, 1/2] and thus in the probability calculation, we have a 1/2
in the denominator, which leads to the assertion: Pr[(u, v) ∈ F ] ≤ 2xe. We leave the details to the
reader as an exercise.
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Now suppose φ(u) = i and φ(v) = j, and i 6= j. Notice that (u, v) ∈ F if and only if u ∈ Si or
v ∈ Sj ; this is because if u ∈ Si we are sure v /∈ Si (since φ(v) 6= i). Therefore, we get

Pr[e ∈ F ] = Pr[u ∈ Si or v ∈ Sj ] ≤ Pr[u ∈ Si] +Pr[v ∈ Sj ]

Next, note that Pr[u ∈ Si] = Pr[d(si, u) ≤ r] ≤ 0.5−dsiu
0.5 = 1 − 2dsiu, since r ∈ [dsiu, 0.5] for the

event to occur. Similarly, Pr[v ∈ Sj ] ≤ 1− 2dsjv. Adding them up, we get

Pr[e ∈ F ] ≤ 2 ·
(
1− dsiu − dsjv

)
≤ 2duv ≤ 2xe

where the middle inequality is obtained using triangle inequality and (5): 1 ≤ dsisj ≤ dsiu + duv +
dvsj , implying 1− dsiu − dsjv ≤ duv.

Exercise:K Explain how you will modify the above algorithm to obtain an 2
(
1− 1

k

)
-approximation.

Exercise: K Prove the integrality gap of (Multiwaycut LP) is at least 2
(
1− 1

k

)
.

Notes

The 2(1− 1/k)-approximation and the NP-hardness of the MULTIWAY CUT problem is from the paper [4]
by Dahlhaus, Johnson, Papadimitriou, Seymour, and Yannakakis. The presentation above for s, t-cut is
probably folklore, but it forms a basis for the 3

2 -factor algorithm in the paper [3] by Calinescu, Karloff,
and Rabani. This paper introduced a new LP-relaxation (as one has to given the exercise above) based
on “embeddings” on a simplex. The integrality gap of this LP is still not fully understood, and in recent
years, there has been a lot of active work on it. A notable result is in the paper [5] by Manokaran, Naor,
Raghavendra and Schwartz where the authors prove that the integrality gap of this LP captures the UGC-
hardness of multiway cut; if one obtains a better approximation factor than the integrality gap by some other
means, one refutes the UGC. An elegant 4

3 -approximation is present in the paper [2] using a randomized
rounding idea using exponential random variables. The current best upper bound on the integrality gao is
1.2965 from the paper [6] by Sharma and Vondrák, and the best lower bound is 1.20016 from the paper [1]
by Bérczi, Chandrasekharan, Király, and Madan.
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