Minimum s, t-cut and Multiway Cut ${ }^{1}$

- Cut Problems. In the next few lectures we look at various cut problems in graphs. The input will be an undirected graph $G=(V, E)$ with non-negative costs $c(e)$ on edges. The objective for each problem is to select a subset $F \subseteq E$ of these edges with minimum cost $c(F):=\sum_{e \in F} c(e)$, so that upon deleting F certain vertices get cut or disconnected.
- Minimum s, t-cut Problem and the Distance based LP. We begin with a problem which has an exact algorithm and which you have seen before in your undergraduate algorithms class. It is the min s, t cut problem. The objective is to select F such that after deleting F, we disconnect s from t. However, we will look at an LP relaxation for the problem, and argue that it is exact. Let's begin with the linear program.
We have variables x_{e} for every edge $e=(u, v)$ indicating whether we select (u, v) in our solution or not. The objective is clear, it is to minimize $\sum_{e \in E} c(e) x_{e}$. What about the set of constraints? We need that in every path from s to t, we select at least one edge into F; if not, then s and t would remain connected. We could write a collection of exponentially many constraints and indeed we could solve it using the ellipsoid method. However, we write a succinct LP. It stems from the following interpretation. If we think of x_{e} as the "length" of the edge e, then saying that every path contains at least one edge in F is equivalent to saying that the length of this path is at least 1 . In other words, the constraint can be captured by saying that the "distance" from s to t induced by these lengths x_{e} has to be at least 1 .
How do we capture these distances? For every pair of nodes (not necessarily neighboring) we now introduce a variable $d_{u v}$ indicating the distance. We need $d_{s t} \geq 1$. How should the d-variables relate with the x-variables? Well, for any edge (u, v), the distance $d_{u v}$ is at most the length $x_{u v}$. Finally, the fact that the d 's induce a "distance", we introduce the "triangle inequality constraint" : between any triple of vertices $\{u, v, w\}$, we must have $d_{u w} \leq d_{u v}+d_{v w}$. Note that the true shortest path distances do satisfy this, and thus the LP below is a valid relaxation.

$$
\begin{align*}
\operatorname{Ip}:=\min & \sum_{e \in E} c(e) x_{e} \\
& d_{u v} \leq x_{e}, \tag{1}\\
& d_{u w} \leq d_{u v}+d_{v w}, \tag{2}\\
& d_{v v}=0, \tag{3}\\
& d_{s t} \geq 1 \tag{4}
\end{align*}
$$

Exercise: $\bigcirc \bigcirc$ Write the dual for the LP above. Interpret the dual.

[^0]- An Exact algorithm via Randomized Rounding. We now show a randomized algorithm which returns an s, t cut with probability 1 with expected cost $\leq \mathrm{lp}$. This should remind of another algorithm we saw in class earlier. Furthermore, it also shows randomization is completely unnecessary. Here is the algorithm.

```
procedure Randomized Min \(s, t-\operatorname{CuT}(G=(V, E), c(e) \geq 0\) on edges):
    Solve ( \(s, t\)-min cut LP) to obtain \(x_{e}\) 's and \(d_{u v}\) 's.
    Randomly sample \(r \in(0,1)\) uniformly.
    \(S:=\left\{v: d_{s v} \leq r\right\}\).
    return \(F:=\partial S\).
```

Theorem 1. Randomized Min s, t-Cut returns a set F whose removal disconnects s and t with probability 1, and $\operatorname{Exp}\left[\sum_{e \in F} c(e)\right]=\mathrm{lp}$.

Proof. First, let us observe that F is a valid min-cut with probability 1 . Indeed, the set S contains s since $d_{s s}=0$ and $t \notin S$ since $d_{s t} \geq 1>r$. Thus, ∂S disconnects s from t irrespective of r.
Now fix an edge $e:=r(u, v)$ and let us analyze the probability $(u, v) \in F$. We perform this a bit carefully as similar calculations will be used at least twice more. Let $\mathbf{1}_{e \in F}$ be the event $e \in F$. We note that this event is the union of two events.

$$
\mathbf{1}_{e \in F}=\mathbf{1}_{u \in S, v \notin S} \cup \mathbf{1}_{u \notin S, v \in S}
$$

At this point, without loss of generality, let us assume $d_{s u} \leq d_{s v}$ (otherwise swap their names). This allows us to infer that $\mathbf{1}_{u \notin S, v \in S}$ cannot occur: if $v \in S$, then $d_{s v} \leq r$ which would imply $d_{s u} \leq r$. Therefore, the only event to analyze is $\mathbf{1}_{u \in S, v \notin S}$. Therefore,

$$
\operatorname{Pr}\left[\mathbf{1}_{e \in F}\right]=\operatorname{Pr}\left[\mathbf{1}_{u \in S, v \notin S}\right]=\operatorname{Pr}\left[d_{s u} \leq r<d_{s v}\right]
$$

What is the probability that this random r is between $d_{s u}$ and $d_{s v}$? Well, triangle inequality (2) tells us that $d_{s v} \leq d_{s u}+d_{u v}$, and (1) tells us $d_{s v} \leq d_{s u}+x_{e}$. Thus the event $d_{s u} \leq r<d_{s v}$ is a subset of the event $d_{s u} \leq r<d_{s u}+x_{e}$. Therefore, we get

$$
\operatorname{Pr}\left[\mathbf{1}_{e \in F}\right]=\operatorname{Pr}\left[d_{s u} \leq r<d_{s v}\right] \leq \underset{r}{\operatorname{Pr}}\left[r \in\left[d_{s u}, d_{s u}+x_{e}\right]\right]
$$

And the final probability, the chance that a random $r \in[0,1]$ lies in the interval $\left[d_{s u}, d_{s u}+x_{e}\right]$ is precisely $\min \left(x_{e}, 1-d_{s v}\right) \leq x_{e}$. In sum, the probability a particular edge e lies in F is at most x_{e}. Applying linearity of expectation gives us $\operatorname{Exp}\left[\sum_{e \in F} c(e)\right] \leq \sum_{e \in E} c(e) x_{e}=\mathrm{lp}$.

Remark: As in the case of vertex cover in bipartite graphs, the above shows that running the algorithm above with any $r \in(0,1)$ would return a solution with cost exactly equal to Ip. Do you see this?

- Multiway Cut Problem. Let's move to an NP-hard problem. We are given k vertices $\left\{s_{1}, \ldots, s_{k}\right\}$. The objective now is to find F of minimum cost such that in $G \backslash F$ every s_{i} is disconnected from every other s_{j}. When $k=2$, this is simply the minimum s, t-cut problem. Turns out, this problem is $N P$-hard even when $k=3$.

We begin with the LP very similar to ($s, t-\mathrm{min}$ cut LP). In fact, the only difference is that (4) is replaced by the natural generalization.

$$
\begin{align*}
\mathrm{Ip}:=\min & \sum_{e \in E} c(e) x_{e} \tag{MultiwaycutLP}\\
& d \text { satisfies (1),(2),(3) } \\
& d_{s_{i} s_{j}} \geq 1, \quad \forall i \neq j
\end{align*}
$$

- A 2-approximate algorithm via randomized rounding. The algorithm and analysis are similar to that of min-cut, but subtly different. First, the random radius r is selected uniformly at random from $(0,1 / 2)$. Indeed, this leads to the factor 2 . The algorithm is described below

```
procedure Randomized Multiway \(\operatorname{Cut}\left(G=(V, E), c(e) \geq 0\right.\) on edges, \(\left.s_{1}, \ldots, s_{k}\right)\) :
    Solve (Multiwaycut LP) to obtain \(x_{e}\) 's and \(d_{u v}\) 's.
    Randomly sample \(r \in(0,1 / 2)\) uniformly.
    For \(1 \leq i \leq k\), define \(S_{i}:=\left\{v: d_{s v} \leq r\right\}\).
    return \(F:=\bigcup_{i=1}^{k} \partial S_{i}\).
```

Theorem 2. Randomized Multiway Cut returns a set F whose removal disconnects every s_{i} from every other s_{j} with probability 1 , and and $\operatorname{Exp}\left[\sum_{e \in F} c(e)\right]=2 \mathrm{l}$.

Proof. Once again, it should be clear that F is a valid multiway cut for any choice of $0 \leq r<1 / 2$ (indeed, even $r<1$ would lead to a valid solution). The interesting thing is the expected cost. Fix an edge $e:=(u, v)$; we now prove that the probability $(u, v) \in F$ is at most $2 x_{e}$.
We begin by making a key observation. For any vertex $v \in V$, there can be at most one value $1 \leq i \leq k$, call this $\phi(v)$, such that v can lie in $S_{\phi(v)}$. Put differently, v cannot lie in any other S_{i} for $i \neq \phi(v)$. It could be that for some r, v lies in none of the S_{i} 's, but if it does, then that S_{i} is $S_{\phi(v)}$. The reason is simple. Suppose v could lie in S_{i} and S_{j} for $i \neq j$. Then $d\left(v, s_{i}\right)<1 / 2$ as for some radius r we have $d\left(v, s_{i}\right) \leq r$. Similarly, $d\left(v, s_{j}\right)<1 / 2$. But then triangle inequality would imply $d_{s_{i} s_{j}}<1$, which would be a contradiction.
Now let's get back to the edge $e:=(u, v)$. Say $\phi(u)=\phi(v)=i$. Then, the edge $(u, v) \in F$ if and only if $u \in S_{i}, v \notin S_{i}$, or vice-versa. This case is similar to the s, t-minimum cut argument; the only difference is that the radius is drawn in $[0,1 / 2]$ and thus in the probability calculation, we have a $1 / 2$ in the denominator, which leads to the assertion: $\operatorname{Pr}[(u, v) \in F] \leq 2 x_{e}$. We leave the details to the reader as an exercise.

Now suppose $\phi(u)=i$ and $\phi(v)=j$, and $i \neq j$. Notice that $(u, v) \in F$ if and only if $u \in S_{i}$ or $v \in S_{j}$; this is because if $u \in S_{i}$ we are sure $v \notin S_{i}$ (since $\left.\phi(v) \neq i\right)$. Therefore, we get

$$
\mathbf{P r}[e \in F]=\mathbf{P r}\left[u \in S_{i} \text { or } v \in S_{j}\right] \leq \mathbf{P r}\left[u \in S_{i}\right]+\mathbf{P r}\left[v \in S_{j}\right]
$$

Next, note that $\operatorname{Pr}\left[u \in S_{i}\right]=\mathbf{P r}\left[d\left(s_{i}, u\right) \leq r\right] \leq \frac{0.5-d_{s_{i} u}}{0.5}=1-2 d_{s_{i} u}$, since $r \in\left[d_{s_{i} u}, 0.5\right]$ for the event to occur. Similarly, $\operatorname{Pr}\left[v \in S_{j}\right] \leq 1-2 d_{s_{j} v}$. Adding them up, we get

$$
\operatorname{Pr}[e \in F] \leq 2 \cdot\left(1-d_{s_{i} u}-d_{s_{j} v}\right) \leq 2 d_{u v} \leq 2 x_{e}
$$

where the middle inequality is obtained using triangle inequality and (5): $1 \leq d_{s_{i} s_{j}} \leq d_{s_{i} u}+d_{u v}+$ $d_{v s_{j}}$, implying $1-d_{s_{i} u}-d_{s_{j} v} \leq d_{u v}$.

Exercise: Explain how you will modify the above algorithm to obtain an $2\left(1-\frac{1}{k}\right)$-approximation.

Exercise: Prove the integrality gap of (Multiwaycut LP) is at least $2\left(1-\frac{1}{k}\right)$.

Notes

The $2(1-1 / k)$-approximation and the NP-hardness of the Multiway CuT problem is from the paper [4] by Dahlhaus, Johnson, Papadimitriou, Seymour, and Yannakakis. The presentation above for s, t-cut is probably folklore, but it forms a basis for the $\frac{3}{2}$-factor algorithm in the paper [3] by Calinescu, Karloff, and Rabani. This paper introduced a new LP-relaxation (as one has to given the exercise above) based on "embeddings" on a simplex. The integrality gap of this LP is still not fully understood, and in recent years, there has been a lot of active work on it. A notable result is in the paper [5] by Manokaran, Naor, Raghavendra and Schwartz where the authors prove that the integrality gap of this LP captures the UGChardness of multiway cut; if one obtains a better approximation factor than the integrality gap by some other means, one refutes the UGC. An elegant $\frac{4}{3}$-approximation is present in the paper [2] using a randomized rounding idea using exponential random variables. The current best upper bound on the integrality gao is 1.2965 from the paper [6] by Sharma and Vondrák, and the best lower bound is 1.20016 from the paper [1] by Bérczi, Chandrasekharan, Király, and Madan.

References

[1] K. Bérczi, K. Chandrasekaran, T. Király, and V. Madan. Improving the integrality gap for multiway cut. Mathematical Programming, 183(1):171-193, 2020.
[2] N. Buchbinder, J. Naor, and R. Schwartz. Simplex partitioning via exponential clocks and the multiway cut problem. In Proc., ACM Symposium on Theory of Computing (STOC), pages 535-544, 2013.
[3] G. Calinescu, H. Karloff, and Y. Rabani. An Improved Approximation Algorithm for Multiway Cut. J. Comput. Syst. Sci., 60(3):564-574, 2000.
[4] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The Complexity of Multiterminal Cuts. SIAM Journal on Computing (SICOMP), 23(4):864-894, 1994.
[5] R. Manokaran, J. Naor, P. Raghavendra, and R. Schwartz. Sdp gaps and ugc hardness for multiway cut, 0 -extension, and metric labeling. In Proc., ACM Symposium on Theory of Computing (STOC), pages 11-20, 2008.
[6] A. Sharma and J. Vondrák. Multiway cut, pairwise realizable distributions, and descending thresholds. In Proc., ACM Symposium on Theory of Computing (STOC), pages 724-733, 2014.

[^0]: ${ }^{1}$ Lecture notes by Deeparnab Chakrabarty. Last modified: 17th Feb, 2022
 These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at deeparnab@dartmouth.edu. Highly appreciated!

