
Dual update algorithms to solve certain LPs approximately1

• In this lecture, we look at how a particular “primal-dual” algorithm can be used to solve certain
LPs approximately. This methodology, also called the multiplicative weight update method, under-
lies many different optimization problems, and has applications in other areas such as learning and
portfolio management. We focus on the set cover LP for illustrative purposes.

• Let’s recall the LP for set cover.

lp := min
m∑
j=1

cjxj (Set Cover LP)

∑
j:e∈Sj

xj ≥ 1, ∀e ∈ U (1)

1 ≥ xj ≥ 0, ∀j = 1, . . . ,m (2)

Given an ε ∈ (0, 1), our goal is to find a feasible x ∈ [0, 1]m such that
∑

j=1 cjxj ≤ (1 + ε)lp.

• The main idea behind this algorithm is to select dual variables ye for each e ∈ U . However, the
function of this dual variables in this algorithm is not to generate a large dual objective. Rather, the
function of the dual variables is to aggregate all the n = |U | constraints of the form (1) into one
single constraint, and then solve the primal LP with only a single constraint. This is similar to the
Lagrangean function idea which we saw long ago; there one actually moved this “single constraint”
also to the objective.

• Fix ye ∈ [0, 1] variables for every e ∈ U . We call this vector y ∈ [0, 1]n. Then, consider the following
“single constraint” LP

lp(y) := min
m∑
j=1

cjxj (Aggregated Set Cover LP)

∑
e∈U

ye

 ∑
j:e∈Sj

xj

 ≥∑
e∈U

ye, (3)

1 ≥ xj ≥ 0, ∀j = 1, . . . ,m (4)

Since any feasible solution x to (Set Cover LP) is also a feasible solution to (Aggregated Set Cover LP),
we get the following observation.

Observation 1. For any y ∈ [0, 1]n, if x← O(y), then we have c>x ≤ lp.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 14th Feb, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1

• The Main Idea, qualitatively. Given a dual vector y ∈ [0, 1]n, we first solve (Aggregated Set Cover LP)
to obtain a solution x which has objective value ≤ lp, but may not be feasible for (Set Cover LP). In
the next bullet point we show how to do this, and we denote this algorithm as an oracle O, and use
the notation x ← O(y). Next, we modify the dual vector y in a natural way : for elements e which
are violated, we bump up the ye value with the intuition that (Aggregated Set Cover LP) would tend
to satisfy the eth constraint. Indeed, the “bump” would be a function of the violation. For elements
e which are not violated, we bump down their ye’s since they seem safe. Once we do this, we again
call the oracle to get a new primal solution x. We then repeat the above steps. After T such rounds,
we have many xt’s, each of which have LP objective value at most lp, and yet individually they may
not be feasible for (Set Cover LP). What is quite interesting is that there is a systematic way for
“bumping up/down” such that after a reasonable number of rounds, the average of all these xt’s are
“close” to being feasible. And then if we scale up the average, then we get a truly feasible solution to
(Set Cover LP) whose objective value is at most (1 + ε)lp.

• Oracle. Before we move on, let’s note that solving (Aggregated Set Cover LP) is quite easy. In
particular, given y, we can rewrite (Aggregated Set Cover LP) as

min
m∑
j=1

cjxj :
m∑
j=1

wjxj ≥ β, xj ∈ [0, 1] (5)

where β :=
∑

e∈U ye and wj :=
∑

e∈Sj
ye.

Now we observe that (5) is easy to solve. Rename the sets such that c1
w1
≤ c2

w2
≤ · · · ≤ cm

wm
. The

optimum solution to (5) is obtained by setting xj = 1 for 1 ≤ j ≤ k where k is largest entry with∑k
j=1 wj ≤ β. We set xk+1 := 1

wk+1
·
(
β −

∑k
j=1 wj

)
. The remaining xj = 0 for j > k + 1.

Exercise: K Prove that the vector x ∈ [0, 1]m is the optimum solution to (5).

• Feasibility Vector and Multiplicative Weight Update (MWU). We are now ready to give details about
the main idea. The algorithm proceeds in rounds. At the beginning of round t, we specify the dual
variables y(t) ∈ [0, 1]n for each element in U . We then apply the oracle O(y(t)) to obtain a solution
x(t) ∈ [0, 1]m. We then use x(t) to obtain y(t+1).

To describe the latter process, we need to define a “satisfiability” vector sat(t) ∈ [−1,+1]n which
indicates “how satisfied” element e is with respect to the current primal solution x(t). More precisely,

∀e ∈ U : sat(t)(e) :=
1

d
·

 ∑
j:e∈Sj

x
(t)
j − 1

 (6)

Here, d is the maximum number of sets an element e can be in. The reason for doing this is to make
sure that the range of sat(t)(e) ∈ [−1

d ,+1]. In fact, we state this as an observation since it is going to
be crucial.

Observation 2. For any e and any x(t) ∈ [0, 1]m, the corresponding sat(t)(e) lies in
[−1
d , 1

]
.

Proof. When x(t) ≡ 0, then the value of sat(t)(e) = −1/d, and when x(t) ≡ 1, then the value of
sat

(t)
e = de/d ≤ 1.

2

We make another observation about the sat(t) vector which in plain English states that the y-linear
combination fo the satisfiabilities is non-negative.

Observation 3. For any t,
∑

e∈U y
(t)
e sat(t)(e) ≥ 0.

Proof. The LHS is simply 1
d ·
(∑

e∈U y
(t)
e ·

∑
j:e∈Sj

x
(t)
j −

∑
e∈U y

(t)
e

)
. Since x(t) ← O(y(t)), we

know that x(t) satisfies (3). And thus, the parenthesized term is ≥ 0.

Now we are ready to state the algorithm.

1: procedure MWU SET COVER LP SOLVER(U, S1, . . . , Sm):
2: Initialize wt(1)(e) := 1 for all e ∈ U .
3: Φ(1) :=

∑
e∈U wt(1)(e) = n; y

(1)
e = wt(1)(e)

Φ(1)

4: for t = 1 to T do: . The value of T will be set later.
5: Obtain x(t) ← O(y(t)).
6: Obtain sat(t)(e) for all e using (6).
7: . Update the wt and y vector as follows; η < 1 is a parameter which will be set

later.
8: For all e ∈ U , wt(t+1)(e) := wt(t)(e) ·

(
1− η · sat(t)(e)

)
9: Φ(t+1) :=

∑
e∈U wt(t+1)(e)

10: y
(t+1)
e = wt(t+1)(e)

Φ(t+1)

11: Let x := 1
T

∑T
t=1 x

(t).
12: Return xalg := (1 + ε) · x.

As you can see, the y-vector is in fact a probability distribution generated by “weights” on each
element. If element e has low sat(t)(e), and in particular negative sat(t)(e) indicating the constraint
for e is violated, then its weight is “bumped up”. Alternately, if element e has high sat(t)(e), then its
weight is “bumped down”. Since η < 1 and sat(t)(e) ≤ 1, the weights always remain positive. This
is important.

After running for T rounds, the final answer is a (1 + ε)-multiplicative scaling of the average of the
T different x(t)’s. One thing is immediate from Observation 1.

Observation 4. c>x = 1
T

(∑T
t=1 c

>x(t)
)
≤ lp. Therefore, c>xalg ≤ (1 + ε)lp.

• Analysis. The crux of the analysis is in showing that xalg is indeed feasible if η and T are set carefully.
This in turn proceeds by showing that x is “almost feasible”. Here is the main lemma. Note this
immediately implies for ε < 1, which implies that (1 + ε)(1 − ε/2) > 1, the scaled version xalg is
feasible.

3

Lemma 1. Suppose η := ε
4 and T := 8d lnn

ε2
. Fix an element e ∈ U . Then,

∑
j:e∈Sj

xj ≥ 1− ε
2 .

Proof. The proof is a really slick argument. First note from the definition of x and sat(t)(e) that ∑
j:e∈Sj

xj − 1

 =
d

T
·
T∑
t=1

sat(t)(e) (7)

So we need to lower bound the RHS. In order to do so, we look at the potential function Φ(t).

Claim 1. For any t, Φ(t+1) ≤ Φ(t). Thus, Φ(T+1) ≤ Φ(1) = n.

Proof. By definition, wt(t+1)(e) = wt(t)(e) ·
(
1− η · sat(t)(e)

)
. Using the fact that y(t)(e) = Φ(t) ·

wt(t)(e), we get
wt(t+1)(e) = wt(t)(e) · (1− ηy(t)

e sat(t)(e))

Adding over all e ∈ U and using Observation 3, we get the claim.

The above claim says that the Φ(T+1) at the end of the algorithm is “small”. However, Φ(T+1) is
the sum of the wt(T+1)(e) over all e ∈ U , and these weights are positive. Therefore, Φ(T+1) is
strictly greater than the final weight of this particular element e under consideration. However, if e
was violated by “too many” x(t)’s, then it’s weight would have been bumped pretty high. Since this
weight is not too high (≤ n), we can argue that “most” x(t)’s satisfied e, and thus the average x also
almost satisfies it. To make this rigorous, we need some analytic gimmickry, but the idea is precisely
this. Let’s get to the details.

First, let us figure out wt(T+1)(e) at the end of the T for-loops. By definition this is

wt(T+1)(e) =
T∏
t=1

(
1− η · sat(t)(e)

)
(8)

Now we are going to use the following inequalities which is readily checked

For 0 ≤ x ≤ 1, (1− ηx) ≥ (1− η)x; For −1 ≤ x ≤ 0, (1− ηx) ≥ (1 + η)−x (9)

Now, let P ⊆ {1, 2, . . . , T} denote the t’s with sat(t)(e) ≥ 0, andN denote the t’s with sat(t)(e) < 0.
Then, substituting (9) in (8)

wt(T+1)(e) ≥
∏
t∈P

(1− η)sat
(t)(e) ·

∏
t∈N

(1 + η)−sat
(t)(e) (10)

Since the LHS above is < Φ(T+1) ≤ n, we get the RHS above is ≤ n. Now, we take log to the base e
on both sides to get

lnn ≥

(∑
t∈P

sat(t)(e)

)
ln(1− η)−

(∑
t∈N

sat(t)(e)

)
ln(1 + η) (11)

4

At this point, suppose η was “very tiny” and suppose we could approximate ln(1 − η) ≈ −η and
ln(1 + η) ≈ η, then we would get lnn ≥ −η

(∑n
t=1 sat

(t)(e)
)
. Rearranging, we would get that

d
T

(∑n
t=1 sat

(t)(e)
)
≥ −d lnn

ηT . So, for this “very tiny” value of η, if we chose T = 2d lnn
ηε , then using

(7) we would obtain the proof of the lemma.

But how “very tiny” does this η need to be? Turns out, that η needs to be < ε so that the errors in the
above approximation do not dominate. And thus, the dependence of T on ε is inverse quadratic.

Let us now make the above precise. For that we state another helpful inequality which is easily verified
using calculus (or visualized using Wolfram alpha).

For 0 < η < 1/2, ln(1− η) ≥ −(η + η2); ln(1 + η) ≥ η − η2 (12)

Substituting (12) in (11), we get

lnn ≥ − (η + η2)

(∑
t∈P

sat(t)(e)

)
− (η − η2)

(∑
t∈N

sat(t)(e)

)

≥ − η(1 + η)

(
T∑
t=1

sat(t)(e)

)
− 2η2

∑
t∈N
|sat(t)(e)|

≥ − 2η

(
T∑
t=1

sat(t)(e)

)
− 2η2T

d

where in the last inequality we used η ≤ 1, and Observation 2. Rearranging, and using (7), we get ∑
j:e∈Sj

xj − 1

 =
d

T
·
T∑
t=1

sat(t)(e) ≥ −d lnn

2ηT
− η

Substituting η := ε
4 and T := 8d lnn

ε2
, we get that

∑
j:e∈Sj

xj ≥ 1− ε
2 , proving the lemma.

• Therefore, we see that the set-cover LP can be solved to ε-accuracy inO(d lnn/ε2) oracle calls. Each
oracle call standalone may take O(m) time, but one can be clever and amortize this cost to get an
O((n+m) lnn/ε2) running time. For constant ε, this is a “near linear” running time. Which is pretty
good.

Notes

The idea described here is originally from the paper [2] by Plotkin, Shmoys, and Tardos. The exposition in
this note heavily borrows from the beautiful survey [1] on the multiplicative weight update method by Arora,
Hazan, and Kale. As can be expected there is nothing special about set-cover LP, and the above technique
holds for a much general class of LPs. We refer the reader to the above two papers.

5

References

[1] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-algorithm and
applications. Theory of Computing, 8(1):121–164, 2012.

[2] S. Plotkin, D. Shmoys, and E. Tardos. Fast approximation algorithms for fractional packing and cover-
ing problems. Math. Oper. Res., 20:257–301, 1995.

6

