• Call a subset  $\sum V$  binding if  $|\{z_{s_i}, t_i\} \cap S| = 1$  for some  $| \leq i \leq k$ 

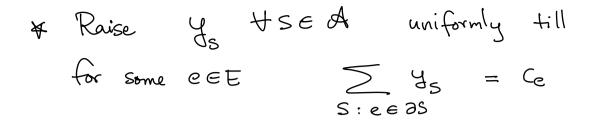
$$|p := \min \sum_{e \in E} c(e) \times e$$

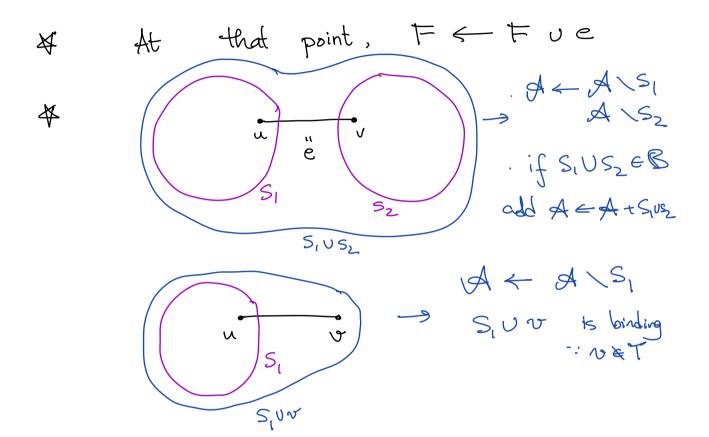
$$\frac{\forall S \subseteq V \text{ binding}}{\forall S \subseteq V \text{ binding}} : \times (\partial S) = \sum_{e \in \partial S} \chi_e \ge 1$$

$$K_e \ge 0$$

$$\frac{\forall V \otimes V}{\forall S \otimes S \otimes S}$$

$$\frac{\forall V \otimes V \otimes S}{\forall S \otimes S \otimes S}$$


$$\frac{\forall V \otimes S \otimes S}{\forall S \otimes S \otimes S} = \frac{\forall S \otimes S}{\forall S \otimes S \otimes S}$$


$$\frac{\forall V \otimes S \otimes S}{\forall S \otimes S \otimes S} = \frac{\forall S \otimes S}{\forall S \otimes S \otimes S}$$

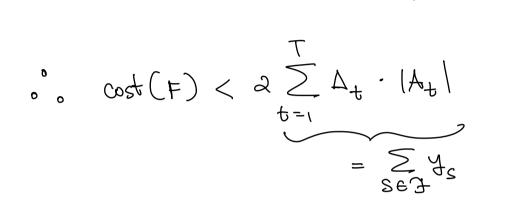
\* We will maintain A is a collection of  

$$\leq 2k$$
 disjoint sets \$ each terminal  
in some AEA

 $F \leftarrow \phi //prinal fonst$ 






# At the end, we "prune" F. We go over edges in reverse order they were added deleting any edge whose deletion keeps it a valid Steiner forest

Analysis  
Observe  
• The dual growth occurs in Trounds  
• In round 
$$t \in 1, ..., T$$
,  
-  $A_t := set of active binding sets$   
• are dispirit  
•  $\ddagger$  increase by some  $A_t \ge 0$   
•  $dual = \sum_{t=1}^{T} \sum_{s \in A_t} A_t = \sum_{t=1}^{T} A_t \cdot |A_t|$ 

• For every edge 
$$e \in F$$
  
 $c(e) = \sum_{s \in B: e \in \partial S} J_s$   
 $s \in B: e \in \partial S$   
 $= \sum_{t=1}^{T} \sum_{s \in A_t} A_t$   
 $t = 1 \quad S \in A_t: e \in \partial S$   
 $\therefore cost(F) = \sum_{e \in F} \sum_{t=1}^{T} \sum_{s \in A_t} A_t$   
 $e \in F \quad t = 1 \quad S \in A_t: e \in \partial S$   
 $= \sum_{t=1}^{T} \sum_{s \in A_t} A_t \cdot |\partial S \cap F|$ 

Snapshot @ some t  
:  
At  
not  
possible  
T  
MAIN CLAIM: F doesn't contain cycles  
in graph where ventices  
ave 
$$A_t \neq (S,T)$$
 is an edge  
if  $\exists eeF = st one pt$   
one int

CLAIM =)  $\sum_{S \in A_{+}} \deg_{P}(S) \leq 2(|A_{+}| - 1)$  $\leq 2|A_{+}|$ 



