
CS 36/236: Approximation Algorithms (Winter 2022) Problem Set
This is a living document which will refresh frequently. Check every weekend for newer problems.

Can be done in groups of size & 2.

Instructions

• Credit Statements: At the beginning of each problem you must write who all (including the teaching
staff) you discussed this problem set with. This is important. Even if you did not talk with anyone
about any of the problems, you need to mention “No one”. Without a credit statement, you may be
awarded 0 for the problem.

• External Sources: You are not allowed to consult any sources other than the notes and the text-books.
Many of these problems have solutions out there on the web. Don’t go hunting for them. If you
stumble upon them by chance, then cite it. Uncited solutions will be an honor code violation.

• Presentation: Your presentation should satisfy the following three C’s: they should be Correct, Clear,
Concise. Do not ramble. Ideally, we should be able to read and completely understand any answer to
a single problem in less than five minutes.

• LaTeX: You have to use LaTeX. Style files will be provided in Canvas. The main reason is that I will
often choose the best solution among you all as official solutions.

• Problems: Not all problems are of the same level of difficulty. Those marked with a single K should
be like an exercise and quick to do, those with two KK should be do-able in a couple of hours
or so, and those with three KKK may take longer. Instructive problems which teach you a con-
cept/algorithm are marked with ¸. I may also add some problems which I may not know the answer
to myself. That doesn’t mean they are difficult, rather, it means I haven’t thought too much about
them. I will mark them with a Y.

1



Problem 1. [Dominating Set] K
Given an undirected graph G � �V,E�, a dominating set U is a subset of V such that every vertex of

V is either in U or has a neighbor in U . Explain why the minimum cardinality dominating set is a set cover
problem. Concisely describe the greedy algorithm for finding a minimum cardinality dominating set and
state what its approximation factor is. Note: you don’t have to re-do the analyses done in class.

Problem 2. [Unweighted Set Cover Analysis] K
Read the analysis of the unweighted set cover in the notes. This is the exercise following Claim 1. If k is

the cardinality of the optimum set cover and I is the set cover returned by the greedy algorithm, then argue
that ¶I¶ & k � �1 � ln �n©k��. Use this to argue that if every set ¶Si¶ & d, then GREEDY SET COVER is an�1 � ln d�-approximation algorithm.

Hint: The algorithm must be covering at least one element in each iteration. This may be useful...

Problem 3. ¸ [Maximum k-Coverage] KK
In the MAX-COVERAGE problem, we are given m sets S1, . . . , Sm each a subset of a universe U . We

are also given an integer parameter k ' 1. The objective is to pick k out of these m sets, indexed by I with¶I¶ � k such that ¶�j"I Sj¶ is maximized. Describe a natural greedy algorithm for this problem and prove
that is an �1 � 1

e
�-approximation. For an extra K, also show that the analysis is near tight as k ��.

Hint: Hopefully, the greedy algorithm is clear to you. Let V N U be the elements covered by the
optimal solution. Modify the analysis of Theorem 1. Perhaps define xj as the number of elements of V
not covered in the jth loop. You may need the inequality, �1 � z� & ez for all z, handy.

Hint: More hints: as in the set cover analysis, we need to relate some quantities like xj’s and nj’s. But
the definition is important here. So, as in the previous hint, let xj be the number of elements of V , that is
the elements that the optimum solution covers. What should nj be? Since the algorithm may completely
ignore V and pick elements in U ¯V , we should not define nj as the number of new elements of V that
is covered by the algo. Instead, we should define nj to be the number of new elements covered by the
algorithm in the jth step. However, one now cannot say xj�1 � xj � nj ; after all, the algo might not
have covered any elements from V at all, and xj�1 could still be xj even when nj is positive. So you
should be careful of that.

You can still say xj�1 ' xj � nj (do you see why?) and you can still say nj '
xj

k
. Note again that

you cannot combine these to say xj�1 & xj�1 � 1©k�; please don’t make this mistake. So how should
you proceed?

Hint: argue that for any j, n1 � . . . � nj is large as compared to opt � x1. In particular, n1 '
opt
k

,

n1 � n2 '
opt
k
� �1 � �1 � 1

k
��, and more generally

n1 � . . . � nj '
opt

k
� �1 � �1 �

1

k

 � �1 �

1

k

2 ��� �1 �

1

k

j�1�

2



Problem 4. ¸ [Maximum Colorful Coverage] KK
In the MAX COLORFUL COVERAGE problem, we are given m sets S1, . . . , Sm. Each set Sj now has a

color cj which is one out of k colors r1, 2, . . . , kx. The objective is to select k sets, each of a different color,
so as to maximize the number of elements in the union. Formally, we need to find I N m such that for all
j, j

¬
" I , we have cj j cj ¬ , and

»»»»»»�j"I Sj
»»»»»» is maximized.

Describe a natural greedy algorithm for this problem and prove that is an 1
2
-approximation. For an extra

K, also show that the analysis is near tight as k ��.

Hint: Let A be the set of elements covered by your greedy algorithm. Suppose the optimum solution
picks the sets O1, . . . , Ok where set Oj has color cj . When you pick the jth colored set in your algo-
rithm, can you compare the number of new elements this set covers with ¶Oj ¯ A¶? And then, can you
complete the proof?

Problem 5. ¸ [Facility Location] KK
In the FACILITY LOCATION problem, there are two sets: F , a set of facilities, and C, a set of clients.

The objective is to “open” a subset of these facilities and “connect” every client to some open facility. There
is a cost fi ' 0 associated with opening facility i " F . For every client j " C and facility i " F , there is a
connection cost d�i, j� in case i is opened.

First argue that the FACILITY LOCATION problem is a generalization of the Set Cover problem. Then
describe a natural greedy O�log n�-approximation algorithm and argue about its running time. Please note
that you have to describe an efficient (polynomial time) algorithm. If not obvious, you will have to argue
why it is polynomial time.

Hint: Try the charging argument. In the Supplementary reading, we actually describe a 2-approximation
algorithm when the d��, �� satisfy triangle inequality. Note, in this problem, there is no such assump-
tion. Nevertheless, reading the initial portion of those notes may give you an idea on how to solve this
problem.

Problem 6. [Steiner Tree approximation factor.] K
In the lecture notes, we proved that MST-STEINER is a 2-approximation algorithm. Prove that, in

fact, it is a 2 �1 � 1
¶R¶

	-approximation algorithm. That is, if T is the tree returned, then cost�T � & 2 �

�1 � 1
¶R¶

	 opt�G�, where opt�G� is the minimum cost Steiner tree.

Problem 7. [Bad examples Local Search in Cut Problems] K

a. Describe an undirected graph with a locally optimal cut whose value is � opt
2

.

b. Describe a directed graph where DIRECTED MAX-CUT LS’s solution has value � opt
3

.

3



You are allowed to have parallel edges.

Problem 8. ¸ [Local Search and Submodular Functions.]KKK
A set function f defined over a universe U defines a value f�S� on every subset S N U . A set function

is submodular if it satisfies the following:

f�A� � f�B� ' f�A <B� � f�A =B�
Such functions arise in many settings. For instance, if G � �V,E� is a directed graph with non-negative
weights w�e� on edges, then the function f�S� �� <e"∂�S w�e� is a submodular function. In the submod-
ular function maximization problem, you have to find a subset S N U which maximizes f�S�. We assume
that f is non-negative, that is, f�A� ' 0 for all A N U .

A set S is a local maximum if f�S� ' f�S < e� for all e � S, and f�S� ' f�S ¯ x� for all x " S.
In this exercise, you will prove that a locally maximum set S satisfies max �f�S�, f�S�� ' opt

3
, where

opt � maxANU f�A� and S �� U ¯ S. This generalizes the analysis of DIRECTED MAX-CUT LS. Let O
be the set with f�O� � opt.

a. Use the local maximality of S and submodularity of f to prove that f�S� ' f�O < S�.

Hint: Submodularity implies that for any set A, a superset B, and e � B, one has f�A < e� �
f�A� ' f�B < e� � f�B�. The quantity f�A < e� � f�A� is e’s marginal on A, and the above
says submodular functions have “decreasing marginality”. Local maximality of S implies any
items marginal is non-positive. Now can you finish the proof.

b. Use above and submodularity to claim f�S� � f�S� ' f�O = S�.

Hint: Apply the definition of submodularity on two particular sets A and B. You will also need
to use non-negativity of f .

c. Use the local maximality of S and submodularity of f to prove that f�S� ' f�O = S�.

Hint: Local maximality implies that for any item x " S, the marginal of x on S ¯ x is non-
negative. Submodularity implies that x’s marginal should be non-negative for any subset of S ¯x
as well. Now can you finish the proof?

d. Again using submodularity, and the above three parts, prove that 3 max �f�S�, f�S�� ' f�O�.

Hint: This should now be easy by adding the above three...

Problem 9. Y[Local Search for k-Center] KK
In the k-center problem, one is given n points X and a distance d��, �� satisfying triangle inequality.

That is, for any three points x, y, z, we have d�x, z� & d�x, y�� d�y, z�. For technical reasons, assume that

4



each d�x, y� is a distinct number. The objective is to select k points C N X such that the distance of any
point to a point in C is minimized. Formally, we want to minimize

cost�C� �� max
x"X

d�x,C� where d�x,C� �� min
y"C

d�x, y�
Consider the following local search algorithm for the problem : start with an arbitrary k-points C. If there
exists a swap �c, x� for c " C and x � C such that cost�C� c�x� $ cost�C�, then swap and continue. Let
A be the final k-points obtained that way. Comment on the approximation factor of this local search algo.

Hint: I haven’t thought too much, but it seemed to be if the initial k points chosen are “close-by” the
local optimum solution may be bad. But I am not 100% sure.

Problem 10. ¸ [Farthest Center Algorithm for k-Center] KK
Consider the following “greedy” algorithm for k-center : initialize A with an arbitrary point p1 " X .

Then, in k � 1 subsequent iterations, pick the point p " X which maximizes d�p,A� and add it to A. At the
end, A has k points. Prove that cost�A� & 2opt.

Hint: Let O be the optimal k-center solution. For an o " O let No �� rp " X � d�o, p� � d�p,O�x
be the points in X nearest to o. First, prove that if ¶A = No¶ � 1 for all o " O then cost�A� & 2opt.
Next prove that if at any time of the algorithm ¶A =No¶ ' 2, then at that point d�p,A� & 2opt for all
p " X . Then complete the argument.

Problem 11 (Local Search for Max 3SAT.). KK
Consider the generalizations of the local search algorithms for Max 2SAT for Max 3SAT. In Max 3SAT,

we are given a 3SAT formula where each clause has 3 literals. The objective is to find an assignment
maximizing the number of clauses satisfied. First consider the (obvious) local search algorithm which starts
with an arbitrary assignment, and negates a variable if it leads to an increase in the number of clauses
satisfied. What is the approximation factor of this algorithm? For an extra K, suggest a non-oblivious local
search algorithm for the same and analyze.

Hint: As in Max 2SAT, given an assignment x and variable xi divide the clauses containing this
variable into classes : those with all three variables false, those with all three true, etc. The only thing
that changes in the analysis is the “counting argument”; the number of such sets a single clause may
appear changes. To get the non-oblivious algorithm, I suggest giving “different coefficients” and then
use the analysis to figure these coefficients out.

Problem 12. ¸[Greedy List Scheduling.] KK
Consider the GREEDY LIST SCHEDULING algorithm done in class where the jobs are considered in

decreasing order of processing times. Suppose there is a schedule which assigns at most two jobs in each
machine and has makespan & L and every individual job has processing time % L©3. Then prove the greedy
list scheduling algorithm’s makespan is & L.

5



Hint: Consider the schedule σ with at most two jobs per machine. For every machine i, consider the
(at most) two jobs assigned to it, and rename the job with the larger processing time as i. Rename the
other job to i¬, and i¬ � á if there was only one job allocated to the machine i. Furthermore, rename
the machines (and thus also the jobs again) such that p1 ' p2 ' . . . ' pm. Note by definition, for any i,
we have pi � pi¬ & L.

Now prove that if i $ j, and thus pi ' pj , show that if pi¬ % pj ¬ , then one can swap i¬ and j ¬ and still
have an assignment with makespan & L. So, we may assume i $ j implies pi ' pj and pi¬ & pj ¬ . What
is the schedule that GREEDY LIST SCHEDULING leads to?

Problem 13 (Makespan Minimization with Few Types of Jobs.). KK
Consider the makespan minimization problem on identical machines. Suppose there are only t kinds

of jobs where the sth kind of jobs Bs have processing times qs, for 1 & s & t. Furthermore, suppose you
are given a guess opt. Describe a nO�t� time algorithm to decide if all jobs can be allocated to m machines
(assume m & n) such that the load on every machine is & opt.

For this problem, clearly define the function (which will be stored in a table), the base cases, which
value of the function you are interested, and most importantly, the recursive formula. Also, write the precise
running time (as in, the exponent of n).

Problem 14. ¸(Knapsack Problem) KKK
In the knapsack problem we are given n items and each item j, for 1 & j & n, has a profit pj and a

weight wj . We are also given a knapsack of total capacity B. The objective is to select a subset S of the
items such that (a) their total weight is at most B, and (b) their total profit is maximized. If you remember
your undergraduate algorithms, this problem can be solved in O�nB� time, which is not a polynomial time
algorithm (since B can be exponentially large). Indeed, the knapsack problem is NP-hard. In the following,
we use opt to denote the profit of the maximum profit subset that fits in the knapsack, and assume you know
this value.

a. Consider the following greedy algorithm: order items in decreasing bang-per-buck order, that is,
p1
w1

'
p2
w2

' � '
pn
wn

. Keep selecting items in this order till the knapsack overflows, and then throw
away the last item picked. Prove that if pj & εopt for all j, then the above algorithm returns a solution
with profit ' �1 � ε�opt.

Hint: Show that the algorithm’s profit before the last item is thrown is at least opt. This should
use the greedy property, but make sure you write a complete proof for this. The proof is perhaps
easier if you assume the items picked by the optimum algorithm is disjoint from those picked by
the greedy algorithm. And what if they aren’t? Write this one well.

Now use the assumption given in the problem to complete the proof.

b. Using part (a), design a PTAS for the knapsack problem. For any constant ε % 0, your algorithm’s
running time should be upper bounded by a polynomial in n and logB.

6



Hint: Guess the items with pj % εopt? After guessing, what should you do? And how will the
full analysis proceed?

Problem 15. ¸[Scheduling with Precedence Constraints]KKK
In this problem, we have n jobs and each job has pj � 1. We also have m machines, and for what it’s

worth, think of m � 3. We are also given a DAG (directed acyclic graph) on the n jobs with the following
semantic : if �j, k� is an edge, then job k cannot be begun till job j has finished processing. That is, job j
is a pre-req for job k. The goal is to schedule the jobs on machines satisfying these precedence constraints,
so as to minimize the makespan, that is, the time at which the last job finishes processing.

Note that unlike the problem done in class, in this problem you need to specify for each job the machine
and the time t at which it begins, and this job would end at time t � 1 (since pj � 1). It may so occur that
there are “gaps” in a machine, that is, machine 1 runs job j then sits idle for 3 units, and then runs k. This
may occur, for instance, if k has 4 prereqs which have been assigned contiguously on a second machine.

Consider the following algorithm. Take the jobs in a topological order of the DAG (where the first vertex
is a source, with indegree 0) and schedule them the earliest you can given the schedules of the earlier jobs.
Prove that this is a 2-approximation.

Remark: In fact, the above gives a 2� 1
m

-approximation. So, on 3 machines, it gives 5©3-approximation.
I don’t think anything better is known for 3 machines. On the other hand, this problem is one of the
very few problems which we don’t know to be NP-complete. You can perhaps find a polynomial time
algorithm for the 3 machine case.

Hint: First, what can you say about opt and the longest path in the DAG?
Suppose the algorithm takes t time to finish. Divide these t time slots into two categories : a busy

slot defined as one in which every machine is processing some job, and underutilized slots where at
least one machine is not processing anyone.

Can you upper bound the number of busy slots by opt? (This should be something similar to what
was done in class)?

Can you upper bound the number of underutilized slots as well by opt? To do this, can you use
these underutilized slots to get a path in the DAG?

Problem 16 (Improving the Integrality Gap of Vertex Cover.). KK
Consider the vertex cover problem when all costs cv � 1and the graph is d-regular, that is, all vertices

have degree exactly d. Consider the normal LP-relaxation for vertex cover (as in the notes). Prove that one
can find a vertex cover with & 2 �1 � 1

d�1
� � lp vertices.

Hint: Prove that lp ' n
2

, and one can always find a vertex cover with at most n � �1 � 1
d�1

� vertices.
For the former, you will need to use that all degrees are the same. For the latter, recall that a vertex
cover’s complement is an independent set. Think of the naivest algorithm to pick an independent set —
that may just work.

7



Problem 17. ¸[Strengthening doesn’t help Vertex Cover.] KKK
In this exercise, we describe an example which shows that even upon adding the inequalities of the form

xu � xv � xw ' 2 for all triangles, the integrality gap of the vertex cover LP remains ' 1.99. Indeed, the
idea is to come up with a graph which has no triangles and yet a large vertex cover. The idea is to use a
random graph.

Imagine a graph on n vertices. For every pair of vertices �u, v� include this edge with probability p.

a. As a function of n and p, what is the expected number of triangles in this graph?

b. Pick a subset S N V of size k. What is the probability that this set is independent? Write your answer
as a function of n,p, and k.

c. Using union bound, as a function of k, n, p, what is the upper bound on the probability that there
exists any independent set of size k?

d. Henceforth, set p � n�0.9. Use part (c) to conclude the probability there is an independent set of size
n
0.95 is & 1

3
when n is large enough. (This is a much weaker statement that what you can show).

e. Use part (a) to conclude that the probability there are % n0.3 triangles is at most 1
3
.

f. Remove all edges incident on these triangles thereby getting a triangle free graph. Use part (d) and
part (e) to conclude that with probability % 1©6, you have obtained a triangle-free graph whose largest
independent set is & n0.95 � 3n

0.3.

Hint: The latter quantity is & 0.005n for large enough n, and therefore, this graph has vertex
cover ' 0.995n since complement of IS is VC.

g. Conclude that the integrality gap of the strengthened LP is ' 1.99.

Problem 18. ¸ [Set Cover LP Relaxation and Integrality Gap.]KK
Recall the set cover problem done in class. Write an integer programming formulation which covers the

problem exactly, and obtain the LP relaxation by relaxing the integrality constraints. In the remainder of the
exercise, you need to show that the integrality gap of this LP is Ω�log n�. In particular, this LP can’t be used
to give a better than O�log n�-approximation.

Here is the set system you should use. Fix an integer d ' 2. The universe U is the set of all r0, 1xd bit-
strings except the all zeros string. Thus, ¶U¶ � 2

d
� 1. Thus, if we use n to denote ¶U¶, we see d ' log2 n.

We now describe 2
d sets Sv for every v " r0, 1xd. The set

Sv �� ru " U � u
ã
v is an odd numberx

It may help you to explicitly “draw” this set for d � 2 and 3. Each set’s cost is 1. The following two parts
prove that the integrality gap is Ω�log n�.

a. Describe an LP solution with cost � 2 thereby proving lp & 2.

8



Hint: How many sets is an element u in?

b. Prove that any set cover must pick at least d sets.

Hint: Think of the sets this way : Sv contains all elements x such that<d
i�1 vixi � 1 mod 2. Or

perhaps more illuminatingly, it doesn’t cover the elements x such that<d
i�1 vixi � 0 mod 2.

For an extra K describe a valid inequality which will “kill” this above cheating Y.

Problem 19. ¸Í [Set Cover LP Relaxation and Coding Assignment.]KK
Recall the set cover problem done in class. Write an integer programming formulation which covers the

problem exactly, and obtain the LP relaxation by relaxing the integrality constraints. The remainder of the
exercise is a coding assignment which should done in a colab notebook. For this, you need to familiarize
yourself with the linprog module in scipy.optimize. This is well worth everyone’s time.

a. Look at the set system described in the above problem. Experimentally verify part (a) for d � 5 say.
What’s the largest d your code can handle before running out of memory?

b. For, say d � 4, can you see a valid inequality that you can add which will make the lp value % 2? Y

Problem 20. ¸Í [A Planted Set Cover Experiment] KKKY
After you have warmed your hands with the above, let me come to an experiment that I haven’t done

myself but I am quite curious as to what happens. For this, we have a parameter n which is going to be a
large integer, say 1000 for now. Let d be a small positive integer, say 2 or 3.

Construct the following random set-system. The sets S1 to Sn�d each contain a random subset of the
universe of size *n©d0. The sets Sn�d�1 to Sn are formed as follows: pick a random permutation σ of the
n elements. The first *n©d0 elements of this permutation go to Sn�d�1, the second *n©d0 elements go to
Sn�d�2, and so on. The last set may be slightly smaller. After you have done so, scramble the names of the
sets. You can choose to remember this scrambling, but the codes below should not.

By design, opt � d; in particular, we have planted a good solution (signal) in random noise.

a. Implement the greedy algorithm done in class. What is the value the greedy algorithm gives?

b. What is the value of the LP relaxation. It should be & d, and does it actually find the planted set.

All of the above should be repeated multiple times and averaged-and-error-barred before making a confident
answer to the above questions. Your submission for this should be a CoLab notebook where you also
introduce text to explain various choices, etc.

Problem 21. Í [Strengthening Vertex Cover] KKKY
This is an “experimental evaluation” of the strengthening inequalities for vertex cover that we saw in

class/notes. For this, we are going to solve the LP on random graphs G�n, p�. You may use n � 50, 100,

9



and the values p � 0.5, 0.1. Repeat each experiment decent number of times to increase confidence in your
conclusions.

First construct the random graph G�n, p� where every pair �x, y� is an edge with probability p. On this
graph, first solve the natural LP relaxation (all costs are 1). Use the LP solution to get a vertex cover. Note
that you don’t have to use the algorithm done in class to the word. You could, for instance, perform a greedy
rule as was suggested in class. Whatever you do though, explain in the colab notebook. Note down your
alg©lp.

Next, try to find triangles for which xu � xv � xw $ 2, and as soon as you find one, add it to the LP
relaxation, and run your rounding algorithm again. Rinse and repeat. I would like to know how much does
it help for the different values of n and p.

Problem 22. ¸ [Integrality Gap Example for GAP] KK
For any constant c $ 2, come up with an instance of GAP for which the LP studied in class has an

integrality gap of ' c. More precisely,

a. Clearly describe n jobs, m machines, the pij’s and wij’s for jobs j and machines i, and the machine
loads Bi. The parameters can (and probably should) depend on c.

b. Describe a feasible LP solution xij with objective value lp. Recall, if pij % Bi on any machine, then
you better have xij � 0.

c. Argue why any integral solution’s value is at most lp©c.
For partial credit, show the above for any c % 1.

Hint: Since there are so many parameters, let me tell you that an answer to the above question exists
even when all pij " rpj ,�x, that is, every job j has an intrinsic processing time pj , but it can’t be
allocated to all machines. Let me also tell you that a gap exists even when wij � 1, that is, if the
solution’s value is just the number of jobs assigned. Final hint: the LP value is n, that is, all jobs are
assigned.

Problem 23. ¸ [Makespan Minimization for Unrelated Machines.]KKK
Consider the “dual” problem of GAP. n jobs, m machines, every job j has a processing time pij on

machine i. The objective now is to assign all jobs to the machines, so as to minimize the maximum load
on any machine. When pij � pj for all i, then this we saw a PTAS for this problem. You need to give a
complete description of a 2-approximation for this problem.

This exercise builds on the remark given in the lecture notes on GAP. However, there are certain steps
missing in the remark. For instance, GAP doesn’t need to allocate all jobs, in GAP the Bi’s are input, there
is nothing like this here, etc. You don’t need to reprove all the things done in the notes; but you will have
to state what theorems you use (they will be slightly different), and then state why the proofs in the lecture
notes imply proofs of your theorem.

This is not a difficult problem if you’ve understood GAP; it just may be a bit long.

10



Remark: Unlike GAP (for which we know a better than 1©2-approximation), nothing better than a
2-approximation is known for this problem. This is true even when all pij " rpj ,�x.

Problem 24 (DeepC’s mistake in GAP). KK
Recall the GAP algorithm from the lecture notes. The idea is to take a GAP instance and LP solution

and move to a bipartite graph. Show that if jobs are taken in increasing order of pij’s, and then follows the
same procedure as described in class, then the “tentative assignment” σ¬ can lead to a load of % Bi � ∆i

(and indeed � Bi � 2∆i).
Indeed, you only need 1 machine for this, and can use any feasible fractional solution x to the GAP-LP.

After you describe your example, also comment on what the tentative assignment is if we take jobs in the
correct decreasing order.

Problem 25 (Finding a long path in an Hamiltonian Graph). KK
G � �V,E� is a Hamiltonian graph if there exists a path (without repeating edges or vertices) from a

vertex s to a vertex twhich contains all the vertices of V . Even if you knew a graph is Hamiltonian, finding a
long path in it is not trivial. Describe a randomized algorithm which finds a path of length at least ' C logn

log logn

for some constant C.

Hint: Finding the longest path in a DAG is easy (right?). Now consider a random ordering σ of the
vertices ofG, and for every undirected edge �u, v� replace it with a directed edge pointing from a lower
σ value to a higher one. You get a directed graph D. Argue that D is a DAG. What’s the expected
length of the longest path in this DAG D.

Problem 26 (Randomized Rounding for Maximum Coverage). KKK
In this exercise, we look at randomized rounding for the max coverage problem. Recall, in this problem

we are given a parameter k, a set family �U, �S1, . . . , Sm��, and the goal is to pick k subsets so that the
maximum number of elements in U are covered. Write an LP relaxation for this problem. Using this, design
a randomized rounding algorithm which picks exactly k sets and covers ' �1 � 1

e
� � lp many elements?

You may find the following inequality handy: for any 0 & t & 1, 1� e
�t
' �1� 1

e
�t. This itself follows from

the “concavity” of the function 1 � e
�z .

Hint: For the LP relaxation you should have two classes of variables : one class which indicates
whether a set is picked, and one class which indicates whether an element is covered. How would these
variables be related?

Next, note that the algorithm cannot pick more than k-sets; and thus the “usual” independent round-
ing may be problematic. Rather, the hint is proceed in k rounds, and in each round pick exactly one set.
An idea similar to this was indeed proposed by a student in class when we looked at Set Cover.

11



Problem 27. ¸ [Randomized Rounding and Set Packing]KKK
In this problem we are given m sets S1, S2, . . . , Sm which are subsets of some universe U . Each set

Sj has a weight wj , which is a positive rational number. We are also told that each set Sj has at most D
elements. The objective is to pick a collection of pairwise disjoint sets with maximum weight. Note that if
U is the set of edges of a graph and each set Sj corresponds to the subset of edges incident on a vertex j,
then the problem is precisely the maximum weight independent set problem that we did in class, and D is
the maximum degree of a vertex.

a. Write an LP relaxation for this problem. This should, by now, be simple.

b. After solving the LP, you have a variable xj for each set Sj . Sample each set independently with
probability α � xj , where α is a parameter you will set later. Let this collection of sets picked by S.
What is Exp�w�S��?

The collection S may not be pairwise disjoint. To fix this, in stage two we delete from S any set Sj if there
exists a set Sk " S , k j j, such that Sk = Sj j o. The next set of calculations now puts a lower bound on
the probability Sj appears in S and is not deleted in stage two.

c. Fix a set Sj . Suppose its elements are r1, 2, . . . , dx for d & D. Now fix an element i " Sj . Con-
ditioned on the event that Sj " S, what is the probability that there exists Sk " S , k j j, such that
i " Sk? Your answer should use the LP constraint here.

d. Using union bound, upper bound the probability:

Pr�¿Sk " S, k j j, such that Sk = Sj j o ¶ Sj " S�
Your upper bound should be in terms of α and D.

Hint: The conditioning is a red herring : the sets are sampled independently. The conditioning is
present to make the next part almost immediate.

e. For the fixed set Sj , upper bound

Pr�Sj " S and ¿Sk " S, k j j, such that Sk = Sj j o�
Your upper bound should be in terms of α, xj and D.

f. Using the above, lower bound

Pr�Sj " S and Sj isn’t deleted in stage two.�
Your lower bound bound should be in terms of α, xj and D.

g. Put a lower bound on the expected weight of the sets picked after stage two. Your answer should in
terms of α,D, and lp. Now pick the best α, and argue that the above algorithm is a 4D-approximation.

Problem 28 (Vertex Cover in k-partite k-uniform hypergraphs). KK
In a k-partite k-uniform hypergraph H � �V,E�, the vertex set V is partitioned into k sets V1 D V2 D

� D Vk, and each hyperedge e " E has ¶e = Vi¶ � 1 for all 1 & i & k. Every vertex v has a cost c�v�.
Describe a k©2-approximation for finding the minimum cost vertex cover.

12



Hint: If you followed the lecture on vertex cover in bipartite graphs and tri-partite 3-uniform hyper-
graphs, you would realize we need to find a “good” distribution of �r1, . . . , rk� such that they sum to
1 with probability 1, and each individual ri is uniform in �0, 2

k
�. I claim that this is actually almost

immediate from the fact that we have done k � 2, 3. In particular, consider the case when k � 4; do
you see a solution immediately from the k � 2 case?

Problem 29. ¸ [Multi-Set-Multi-Cover] KK
Consider the multi-set-multi-cover problem where the input is same as the set cover problem, but now

every element i has a positive integer demand d�i� as to how many times it needs to be covered. More
precisely, the algorithm can choose a set Sj multiple times, but if it chooses it kj times then it pays cost
kjc�Sj�. For every element i, we should have <j�i"Sj

kj ' d�i�. That is, the number of picked sets in
which i appears is at least d�i�. Describe an LP relaxation and anO�log n� randomized rounding algorithm.

Hint: Note that the variable you use in your LP may not be between 0 and 1 since you are allowed to
pick a set multiple times. Nevertheless, you can break any number into its floor (largest integer at most
that number) and the remaining fractional part. Use that fractional part to do the rounding?

Use the Chernoff bound here to make life way easier.

Problem 30 (Practice with taking duals). K
By now we all have seen the LP relaxation for the set cover problem many times. We have a variable xj

for every set Sj . In class, we looked at the LP relaxation and instead of having 0 & xj & 1, we only looked
at the LP with xj ' 0. In this exercise, you need to write the dual when xj & 1 is also in the primal. Note
that the dual LP will look different, since it will have variables corresponding to these constraints.

This exercise is just to give you practice in writing duals.

Problem 31. ¸ [More practice with taking duals]KK
Consider the maximum flow problem in a graph. If you recall, we are given a directed graphG � �V,E�,

and two special vertices s and t. Every edge e " E has a capacity u�e� ' 0. The goal is to find a flow, that
is f�e� for every edge such that (a) for every vertex v � rs, tx, the total flow “coming into” v equals the
total flow “going out” of v, and (b) the flow on any edge f�e� is at most the capacity u�e�. The value of the
flow is the total flow “going out” of s.

• Write the maximum flow problem as a maximization LP. Remember there will be two types of con-
straints corresponding to (a) and (b).

• Write the dual of the above LP. Note that this dual will have two types of variables corresponding to
the two types of constraints. Also be wary which dual variables have non-negative constraints, and
which are free.

Once again, this exercise is just to give you practice in writing duals. However, once you have written the
dual, you should try and interpret it and connect it to the s, t-cut problem. You don’t have to submit this.

13



Hint: I would recommend looking at the notes for how duals look like with equality constraints. And
then deep breaths. Also, office hours may help.

Problem 32. ¸ [Vertex Cover with Penalties on Edges] KK
This is a slight twist on the vertex cover problem. In the usual vertex cover problem, we are given

a graph G � �V,E� with costs c�v� on vertices and the objective is to select a minimum cost subset of
vertices such that every edge has at least one end point in S. In this problem, every edge has a penalty πe
for not being covered. So, the objective is to select a subset of vertices S N V . The cost of this solution is
cost�S� �� <v"S c�v� �<e�e=S�o πe. That is, it is the total cost of the vertices plus the penalities on the
edges which are not covered. The goal is to find the set S with the smallest cost.

• Write an LP relaxation for the problem.

• Write the dual.

• Describe a primal-dual approximation algorithm, and prove the approximation factor is 3.

For an extra K, describe a primal-dual approximation algorithm with approximation factor 2. (This is not
much harder; one extra observation...one extra shot of espresso).

Hint: Add a variable ze indicating whether e pays penalty or not. The objective of the primal LP should
have an extra <e πeze term. What would the constraint of the primal LP look like? Say e � �u, v�.
What’s the relation between xu, xv and ze?

Write the dual mechanically. It’ll still have variables corresponding to every edge.
To get a factor 3, one can really mimic the procedure for primal-dual vertex cover except there will

be another condition when “dual variables” are stopped from rising. Try to understand what that means
in the primal (the corresponding primal-variable should be picked?).

To get a factor 2, one looks at the wastefulness of the above algo, and then proceeds to say, “hey,
why am i paying penalty on edges that i have already covered”.

14


